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ABSTRACT

The research deals with the problem of apsrity-xcited thermomechanical field in a

medium with a surface layer and a near surface void defect. The thermomechanical field

governs the mode of cracking, which leads to failure in the wear surface. The presence

and location of the void defect is most critical. This investigation obtained the solutions for

the temperature distribution and the stress state in a layered medium with a rectangular

cavity. This temperarture distribution and stress state result when the solid medium is

subjected to Coulomb frictional loading from an asperity moving at a moderately high

speed (of approximately 10-15 m/s). In the analysis, the coated medium was represented

by a solid half space, with a thin top surface-layer of solid wear material. The cavity

defect required a mathematical model in terms of the material coordinates. The corre-

sponding governing differential equations were time-explicit and transient. A general finite

difference formulation was developed to calculate both the temperature and the stress

fields. The energy balance method was applied at the corners of the rectangular cavity to

resolve the problem of singularities in the temperature field. The stress singularity at each

corner was represented by a special element that was introdued representing the behavior

of the known stress singularity at the corner and its vicinity. The general equation of the

stress field, including the dynamic term, is of the regular perturbation type. The small

order dynamic term is demonstrated to be a higher order effect by perturbation method,

thus negligible. Numerical solutions were carried out for the zeroth order approximation

and the case of uniform asperity pressure distribution.

It was shown that, at moderately high asperity speed, the thermal stress effect domi-

nates the combined thermo-mechanical stress field, which eventually leads to failure in the

no-cavity case. When a defect, such as a cavity, exists, the stress state that determines the

failure phenomenon is much more severe and can be quantified depending on the location

of the cavity. These results are determined through a numerical computation based on the
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material properties of Stellite 111. However, the parametric effects of material variations in

the coating and the substrate, including changes in both thermal and mechanical properties,

were also considered. The study of the cavity location also established the existence of a

critical cavity location for cracking by cohesive failure. This location is defined by the

critical ligament thickness (thickness between the wear surface and the top edge of the

cavity), at which the cavity-influenced thermal tensile stress reaches a maximum. This

thickness is important to designers when cavities at coating/substrate interfaces are either

unavoidable or too expensive to control in fabrication.
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INRODUCTION

J
1.1 Statement of Problem

This Investigation studies the thermomechanical cracking in a

coated medium with a near surface cavity. Such cavity generally occurs
6

in the neighborhood of the coating/substrate interface, as a result of

either inclusion or poor bonding during the coating process. A typical

geometry of the cavity can be shown as in Figure 1.1. To facilitate

the analysis, this research will first study the effect of a

rectangular cavity. The general failure mechanism Is caused by the

frictional excitation of a moderately high speed asperity traversing

over a coated surface. The understanding of this failure process will

improve the design of the modified wear surface by alleviating the

problem of friction cracking or delaminatlon.

When two flat solids, which are placed in contact under heavy

loads, slide relative to each other, the nominal design pressure

between the mating surfaces is based upon the nominal design contact

area. When the contact pressure is evenly distributed according to

design, the service life of the solids Is not a serious problem, even

at a high rubbing speed. However, at high operating speed, the real

contact area can be reduced by several orders of magnitude. As a

result, a low design pressure may result in a very high Interfacial

4. pressure, thus a very high dry frictional force in the real contact

area. Kennedy [I showed that the size of the real contact area

depends on operating speed and material parameters such as thermal

c~
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conductivity and wear resistance. He concluded that decreasing thermal

conductivity, increasing wear resistance and increasing operating speed

will reduce the real contact area. It was shown that, for a

conservative areal ratio (contact area/nominal area) of 10- 3 (Burton
*

[2] considered 10-4 as a possible areal ratio), a low design pressure

of 240 kPa (35 psi) could result in a 240 MPa (35,000 psi) local

pressure In the contact zone. The high friction would generate locally
0

an extremely high temperature, which was called "flash temperature" by

Archard [3]. The local contact area is called "red banding" or "hot

*spot" [4], which has been experimentally demonstrated. In severe cases

the temperature can be extremely high, leading to cracking of the

surface IS). This phenomenon is called "heat checking" or

"thermocracking" [6J. It is frequently seen in seal rings, brakes, and

rail-wheels C7,8,9,10,11,121 as shown in Figures 1.2 and 1.3. In

general, it was observed that numerous radial cracks developed

perpendicular to the sliding direction and almost periodically along

the circumference. In order to understand these failures, in recent

years, there has been increased emphasis in finding a solution of

failure control, both experimentally and analytically.

1.2 Related Investization in Progress

The phenomenon of high temperature "hot spot" was observed in the

experiments by Archard (3]. A general survey of the problem of

Scracking through the development of a frictional hot spot was discussed

by Burton (4]. Proof of the existence of hot patches of solid-to-solid

contact was obtained experimentally by BannerJee and Burton [13] in the

case of metallic rings rotating against a non-metallic disk and, more

recently, in actual operating face seals by Kennedy (14]. The latter

-3-



Figmre 1.2 Radial hairline cracks on the intallic ring

after r-wnning against a carbon ring at a high

peripheral speed.
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study made use of a new contact probe which enables the monitoring of

contact patch sizes and locations in ring-on-ring or ring-on-disk

configurations. It was proven to be quite effective In determining the

geometry and movement of contact patches in dry operation of mechanical

face seals. In his earlier experiment [IS], Kennedy used a carbon ring

against a metallic mating ring made from 440 C stainless steel,

beryllium copper or 52100 bearing steel under both dry and liquid
0

lubricated conditions. In these experiments, the existence of distinct

spot asperities on the metallic ring was also observed. It was found

that the spots tend to remain stationary with respect to the metallic

mating ring of the seal, whether that ring is stationary or rotating.

However, other investigations have shown hot patches moving relative to

the mating ring and stationary on the primary ring [13,16]. Burton

(17] also reported that, for an aluminum ring sliding on a glass disc,

the hot spot precessed at a much lower speed than the rubbing speed.

The uncertainty of this observed discrepancy on the speed of the moving

asperities remains, but there is no doubt about the existence of the

moving asperities due to thermoelastic instability on mechanical face

seals. Several analytical studies of the failure due to the existence

of the moving asperities have been developed. Surface displacements,

temperature field and stress state of a convective elastic half space

under an arbitrarily distributed fast-moving line heat source were

obtained, using Integral transform techniques, by Ling et al [18,19,20]

and How and Cheng 21]. Kilaparti and Burton [22] have developed an

exact Fourier series solution for a periodic strip heat input. Their

series Is rather unwieldly, but, at large Peclet number (R=Va/K), it

reduces to a form (23] that is simpler than that of Ling and How [183.

---



Recently, Barber [24] employed the Green's function for the problem of

Kilaparti and Burton, and obtained the thermoelastic displacements and

stresses due to a heat source moving over the surface of a half plane.

A finite element analysis was developed by Kennedy [2S] to study the

surface temperatures resulting from frictional heating in sliding

-, systems. He also applied finite element techniques to study the

stresses in the mechanical face seals [6] and showed that the dominant

stresses in the seal components are thermal stresses. The surface

stress component (parallel to the surface) resulting from a periodic

row of moving hot patches, with width 2a each, and a spacing of 2m was

investigated by Tseng and Burton [26]. They concluded that the tensile

stress would appear instantaneously with each passage of the heat

source. Two- dimensional models of heat checking in the contact zone

of a face seal were presented by Ju and Huang E27J. Because of the

4, three-dimensional aspect of those observed "hot spots", Ju and Huang

reformulated the problem in three-dimensional theory of

thermoelasticity [28,29,30]. The investigation concluded that the

highest tensile stress occurs, for an asperity speed of 10-IS m/s (400-

600 ln/s), at a depth of the order of one-tenth the asperity size.

* This depth defines the critical depth of the material. The physical

depth is therefore 50-100 tim. At such a asperity speed, the stresses

from the thermal effect of the asperity friction are an order of

magnitude larger than those from its mechanical traction effect. Ju

i and Huang [31J also demonstrated that, when asperities excite the

surface periodically in close intervals (a numerical example used a

spacing of twelve asperity size), the thermomechanical effects

accumulate, yet tending to a limiting magnitude, even though the

et
-6-
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mechanical stress dissipates with no residue effect. The cumulative

effect definitely depends on the interval of periodic excitations. At

a relatively large interval of approximately 1000 asperity size, no

cumulative effect is evident.

For improvement of the wear property of the surface, recent effort

has been directed toward surface modifications. Research to understand

the behavior of coated surfaces under asperity excitation, hence, has

gained importance. Ju and Chen 132,33) first solved for the case of a

moderately thick coating (thickness of the order of the asperity size).

Later Ju and Liu [34] extended the general formulation of E32,331 to

study the thickness effect of the coating layer for various mechanical

and thermal impedance matchings between the surface coating layer and

the substrate. It is concluded by Ju et al that: (i) a stiff surface

layer would result in higher thermal stress; (1i) the stress state in

layered media is influenced by the layer thickness, reaching a worst

state when the coating layer thickness is in the neighborhood of the
S

critical depth; (iii) a substrate of lower thermal expansion

coefficient, higher Young's modulus, higher thermal conductivity and

capacity will result in lower stresses in the coating layer; (iv) for

the thin coating layer, the shearing stress at the coating/substrate

interface is by no means trivial, depending again on the surface

coating thickness. The interface shear reaches a maximum when the

coating thickness is in the neighborhood of the thermal layer. These

results are important for designing the bonding of the surface coating.iIn the previous work on the moving asperity problem, the analyses

dealt with basically uniform solid media; that Is, the material and

asperity properties are Invariant in the direction of the asperity

17
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motion. In such cases, since the time effect can be rendered implicit

in the Fourier and the Navier equations by using a coordinate system

.1' fixed to the traversing asperity (called the convective coordinate

system), the resulting solutions are steady-state. However, when the

material has a cavity, uniformity in the direction of the asperity

,notion no longer exists. Consequently, a coordinate system fixed

either to the cavity or to the material (referred to as the material

coordinates) must be employed. The governing equations and their

-.., solutions, therefore, are transient. The present investigation not

only obtains the temperature field solutions but also analyzes the

*stress field caused by the input of a moving heat source. In this

study, since the Fourier and the thermoelastic Navier's equations in

the material coordinates are time explicit, the finite difference

method is considered more appropriate. Although a specific numerical

solution does not show the effects of parameters, a general trend of

the parameters effects can be obtained with adequate numerical

solutions for a series of given parametric values.

1.3 General Theory

' The phenomenon of thermomechanical cracking, as observed from

experiments and operational damages, is connected with relatively hard

materials; such as cast iron and Stellite III. Blau (3S] and Ruff and

Blau (36] demonstrated experimentally that the plastic wear and surface

, shear for hard wear material are restricted to a very thin surface

layer (about A-8p). Ju et al (27,28,29,30,33,341 also proved that the

critical depth Is at a depth of an order of magnitude larger than

plastic depth. Therefore, the linear thermoelastic theory holds. The

basic mathematical formulation of uncoupled thermoelasticity consists

V7.O %t e
U-8



.5

of the following equations:

VPzu + (X+p) grad div u - (3X+2V) a grad T = pu (1.1)

and kV2T = pci (1.2):5

'where T and u are temperature and displacement fields, respectivity,

k is the thermal conductivity, p is the mass density, c is the

specific heat, X,p are the Lame constants, and a is the coefficient

of thermal expansion. The coupling term is negligible except for

conditions In which the temperature distributions have sharp
5%

variations in their time histories, which often occurs during the

5,' propagation of thermoelastic waves in the aftermath of thermal shocks

(37,38,39,40,41,421. For the current problem, since the asperity speed

under consideration is much slower than the elastic wave speed, the

uncoupled thermoelastic theory is applied.

The dynamic effect may result from either a dynamic loading state

or a non-steady thermal state in which the time rate of temperature

change could keep up with the stress waves In the material. Duhamel

[43] stated that the inertia term can be disregarded if the time rate

of change of temperature is slow enough. Parkus [44J showed that the

significant effect from the inertia term can arise only when there is

an instantaneous change in the surface temperature or in the

temperature of the surrounding medium. In fact, the dynamic effect is

greatly reduced if the temperature change occurs In a very short, but

finite, Interval of time. This was confirmed by Danilovskaya (45,461,

who studied the dynamic effect due to a thermal shock on the surface of

-9-
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a half-space and demonstrated that the maximum dynamic stress is

reduced to 86 even for the extremely short duration heating of i0- 12

seconds. In general, under usual conditions of heat exchange, the rate

of temperature change is small in comparison with the speed of sound in

the material. Thus, at any Instant, the thermal stress state can be

determined by the instantaneous values of the temperature field.

For the cavity problem, the effect of the dynamic term In Equation

(I.i) will be studied quantitatively with a perturbation method. That

is, the solution to Equation (1.1) can be expressed in an asymptotic

series. Substituting this series into Equation (i.1) leads to a set of

linear equations for u. Each set of linear equations represents a

different order of solution of the asymptotic series. The details of

the perturbation procedure will be addressed in Chapter 4.

210
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CHAPTER 2

ANALTTICAL IDEL AND BASIC EJATIONS

The experiments performed by Kennedy [471 have shown that contact

between two flat conforming rings is concentrated in several (i to 5)

patches, with a few small solid-solid contact spots occurring within

each patch. Each contact spot is identical and the contacts are

equally spaced around the ring circumference. A ring could therefore

be divided into as many sections as the number of contact spots and

only one such section would have to be analyzed. Kennedy [1S) also

proved that the width of the contact spot (asperity) is about 0.1 to I

mm (0.004 to 0.04 in.); however, the size of a typical mating ring is

*several orders of magnitude larger than the asperity size. Because of

this size difference between the contact area and the mating rings, the

analytical model is represented by a semi-infinite body with a thin

coating layer and a rectangular cavity in the neighborhood of the

coating layer/substrate interface. The half space surface is subjected

to the frictional heating of a moving asperity over the wear surface

(Figure 2.1), and the material coordinate system (fixed to the cavity)

is used. As presented in Chapter 1, the linear thermoelastic theory

applies for the current problem. The advantage of the linear theory Is

the application of the superposition principle, which allows a

applri fo the curret prole. Th adatgofhelnrteryi

separation of the stress field to a contribution of the mechanical load

of the pressure and friction from the moving asperity and another

contribution of the heat input from the rate of the frictional energy

dissipation. The combined effects will then determine the possibility

U%
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of fracture initiation. The governing differential equations for the

temperature and the stress fields are the Fourier equation and the

thermoelastic Navier's equation, respectively.

2.1 Temperature Field

The governing equation for the temperature field is

a )T a. (k aT8

w(k + (k _ P c (2.1)
UX2 8 1

where T is the temperature; k is the thermal conductivity; p is the

mass density; c is the specific heat; and 8 denotes the layered

region: I for the coating surface, II for the substrate.

The temperature field T must satisfy the initial condition,ip
T1(x 1 ,x2,O) = 0, (2.2)

and the boundary conditions:
S

(1) The regularity condition holds at Infinity (x 1
2 +x 2

2 ),

To = 0. (2.3)

(ii) In the asperity contact surface (c(t)( x, j c(t)+a, x2 =0), the

maximum heat input through the boundary is the rate of the frictional

energy

k I- = q sr fVp'(x), (2.4)

where pf is the Coulomb coefficient of friction; V Is the asperity

-13-



velocity; p'(x 1 ) is the pressure over the contact area; q is the heat

flux through the contact area; and c(t) is the distance from x,

iorigin to the leading edge of the asperity.
(iii) Outside the contact surface, x. ( c(t) or x, > c(t)+a, x2 = 0,

the convective heat loss, being of small order, is neglected without

loss of generality,

- I = O. (2.5)
32.

(iv) At the coating layer/substrate interface, x2 = H, the continuity

conditions hold

T" T , (2.6)

k BTI 8T (2.7)

where H is the layer thickness.

(v) Adiabatic conditions at cavity boundaries,

=0 , at -d < x < d, x = L' (2.8)

= 0, at -d < x, ( d, x2  L'+e (2.9)

= 0, at x, = d, L' < x. _ L'+e (2.10)

-- = 0, at x1 = -d, L' ( x2 _ L'+e (2.11)
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.1

where d is the half width of the cavity and e is the depth of the cavity.
V

The region between the cavity and the wear surface, which is important in

determining the magnitude of the temperature field and the stress state,

shall be designated descriptively as the ligament region. The distance

between the surface and the cavity top edge Is therefore the ligament

thickness L' (see Figure 2.1).

2.2 Mechanical stress field
S

The elastic Navier's equation and the Hooke's law equation are

X k ) + Bu ) + Lull
FX L x k X i x B x aI

a2UO

-P , i,J,k = 1,2 (2.12)

auO bus  auO
and i = x 6 ( ) + Ij I + I ), IJ,k =1,2 (2.13)

13 ax ax 

where ul and u2 are the displacements in x. and x2 direction,

respectively; ott,012,022 are stress components; X and V are the Lame

constants; and 6 is the Kronecker delta. The summation convention Isii

used for all repeated indices of Roman minuscules.
C

The mechanical stress field is Initially homogeneous.

The boundary conditions are:

(i) On the contact surface (c(t) < xi  c(t)+a, x2 = 0), tractions

are prescribed by

I
2 = Pfp'(X1 ),  (2.14)

, 022 = -p'(x). (2.15)

*%
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(ii) Outside the contact area, the region given by x, ( c(t) or

!i)c(t)+a, x2  0 , the surface tractions are Identically zero:

012 0, (2.16)

022 = 0. (2.17)

(III) The regularity conditions hold at infinity (x1
2 +x2

2 -w),

U0 =0, (2.18)

all 0 . (2.19)
Jmj

(iv) At the coating layer/substrate interface, x. = H, the

continuity conditions are

u = u (2.20)Ui 1

SI II

0 0i= o (2.21)

Vij (v) The cavity boundary is traction free; that is,

-- = 0, at -d , x d , x2 = L' (2.22)

Ko- 2  = 0, at -d x,( d , 2 =L'e (2.23)

o = = 0 , at xi = d , L' x 2 L'+e (2.24)

i-16-



S O~it = O = 0, at x1 = -d , L' < x2 ( Le (2.25)

2.3 Thermal Stresm Field

The thermoelastic Navier's equation isS

Bu1 BuJ ul

n ad I 3Xi : 2 a: (T-To) I Po i,j,k 1,2 (2.26)

8u au 8_ ,oij  0 .6 6ij ( -ex + )1 ( ax + axi

ek

(3 + 2v 6j (T-To ), (2.27)

where a is the coefficient of thermal expansion, T and its derivatives

are derived from the temperature field.

The Initial conditions for the thermal stress field are

u8 (x 19 x2 0) = 0, (2.28)

4,1(x1 x 2 0) = 0. (2.29)

The boundary conditions are:

(1) The surface, x. = 0, I traction free, i.e.

€1

012 = 0, (2.30)
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02 2= 0.(2.31)

(Ii) The regularity conditions hold at infinity, xi 2+X 2 2 -b, i.e.

8O=0 (2.32)

0U = 0, 2.3

N d 1

4.

o-8. = A = 0 at d x d '+e(2.33)

V(i)g Cotn= t coniton hold at the intfce x2 = H,2.e.)

12 12

O = (10 = 0, at -d _d L d x2  L'e(2.39)
11 L2

The2 souto tehiqe 0,d ate nuerca reut of dthe 2.
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" CHA4PTER 3

"DWERATU RE SOLUTIONS

Since a high temperature and its gradients are the source of the

high thermal stresses, which can lead to the thermocracking of the wear

medium. Therefore, it is of primary importance that a temperature

solution is available. The governing equations in the dimensionless

form are as follows:

In the coating layer, O(n$D, denoted by the superscript I,

82f1 82#1 8#1
' -+ - (3.1)

In the substrate region, D<r<u, denoted by superscript II,

32flI 2, Boll
fin -- z(3.2)

where 40(=Tk /qoa) is the dimensionless temperature; (E,r)=(x1/a, x2 /a)

are the dimensionless coordinates in the direction opposed to the

asperity motion and the depth direction, respectively (as shown in

Figure 2.1); c=(Vt/a) is the dimensionless time; D:1/a is the

dimensionless coating thickness; R =(Va/Ku) are the Peclet numbers in

the coating layer (f=I) and in the substrate (1=II); qo is the average

heat flux through the contact area; and T, K, K, a, x1, x2 , V, t, H are

the same as defined in Chapter 2.

3.1 DIfference Forwnlatlon

Because of the analytical complexity of the mathematical model, the

,I -



explicit finite difference metlhud is employed to solve the current

problem [48,49,5O,Si,52,S3,S4,SS,J. A brief discussion of the finite

difference method is given in Appendix I. In the finite difference

method, the semi-infinite body is replaced by a sufficiently large

rectangular region (Figure 3.1). A central difference is used for the

space derivatives, and a two-point forward difference is used for the

time derivative of the first time step, then a three-point forward

difference is employed for the following time steps. The reason for

using the three-point forward difference after the first time step is

that it is more accurate than the two-point forward difference. But,

for the first time step, we have information only on one previous time

line (initial condition), and, therefore, only the two-point difference
.J,

formula may be used.

The governing differential equations in the difference form are:

In the coating layer

(i,J,n) = r l (i-i,J,n-1) (1 - 2(r1 + r2 )](ij,n-i) +

,+ r#(i+l,J,n-1) + r2# (i,J-1,n-1) +

* rz~~ (iJ+1,n-i), n=l (.a+ n=1 (3.3a)

and

i i,J,n) = [-#'(i,J,n-2) + 2rl (1-1,J,n-1) +

+ *1i - - r2 )# (i,J,n-1) + 2r 4 (i+i,J,n-i) +

'a~a,-,-20-
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+ 2r2 I(I,j-i,n-1) + 2r2 r(i,j.1,n--] , n> ( (3.3b)

In the substrate

(ij,n) = 02 r * 1(if Jn-) + [1 - (20rl+2(2r2l i,j,n-1)+

+ O2r 1l#I(i+i,J,n-1) + g2r 241z(i,j-i,n-1) +

2+ 2r 2# (i,J+i,n-1) , n=1 (3.4a)

and

Jr(ij,n) = [-#(l.J,n-2) + 24J2riy (i-1,J,n-i) +

+ (i - Q2 ri -
2 rz )41(i,j,n-i)+2Q2r 4 1(i+l,j,n-i) +

+ 2()r 2#I (i,J-l,n-i)+2Q
2 r24 (i,J~l,n-)]. n>2 (3.4b)

* where r=At/(R1 &E2), r2=At/(R &n2), 02=K I/K, and (i,J,n) denotes

the two spatial Indices and the time step, respectively. For the

explicit scheme, the time step A% must satisfy a stability criterion.

The most commonly used method of stability analysis is Von Neumann's

.method [48,50,54,5S]. In this method, a finite Fourier series
p.
p. expansion of the solution to a model equation is made, and the decay or

amplification of each mode Is considered separately to determine

stability or Instability, as we now demonstrate.

Consider first the difference form of Equation (3.1) of the

-22-
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coating layer

* (i,J,n) I(i,J,n-1) + r1 [(9 i-iJ,n-1) - 291(i,J,n-1) +

+ #1I(i+I,J,nJ] + r2[I(i,J-l,n-1) - 29r(i,J,n-1) +

+
O I(1,J+1,n-1)] . (3.5)

Each Fourier component of the solution 1s written as

#Ii,j,n) . vn eJKE(l&)eJxn~~q

where Vn is the amplitude function at time-level n of the particular

component whose wave numbers are K and K in E and n directions and

i J=4T. - If O=K A and #=K n we obtain

41(ijn) = V1e (3.6b)

"a

Substituting Equation (3.6b) Into Equation (3.5) gives

vn eJ(io+j) = V"-Ieio+j# ) + rltVn- eJ[li-tle+3-2vn-1e lte+j*)

+ Vn-1 eJ[(I(+ O8+j1 ) + r2{Vn-'eJ Oie+(J-)4 ]

%CL
- 2Vn-i el *+) v (3.J[iO+l(+ )*J1  (37)

Canceling the common term e gives

_-23-



V n = Vn- 1  + r(e J  + e- J  - 2) + r2 (e
J  + - 2)] (3.8)

Using the identity eJ +e-JO=2cosO and 2sin 2 (/2)=1-cosO, Equation

(3.8) becomes

V= GV (I - 4risin2() 2 4r 2 sin2 ( 2 V .(3.9)

where G is the amplification factor. Equation (3.9) shows clearly

that, If solutions are to remain bounded, we must have IGI<I for all 6

and #. This is the stability criterion for the heat conduction

- equation.

For IGI<1, we have

0 4
11 - 4r-Sln 2 (2 4r2(Sn2 j < 1 (3.10)

which is true only if

4r~sin2 ( ) + 4r2sin
2(1) _ 2 . for all 0, * (3.11)

The stability requirement is then

1
r, + r 2  ( 2 (3.12)

6

or

R 2-+ ri S- (3.13)

-24-
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Similarly, the equation for the stability criterion for the substrate

is

I

4(ri + r2 ) 2 (3.14)

or

R2 +-

)I

If 02 is less than 1, Equation (3.13) Is the stability criterion;

otherwise Equation (3.IS) is the stability criterion for the current

problem.

Based on previous results in references [28,29,30,31,33,34,35J, we
0

know that high temperature and high thermal stresses occur In the

region near the asperity. Therefore, in that region and in the region

near the cavity, a very fine mesh must be used to calculate accurate

solutions. In the regions far away from the asperity and the cavity, a

relatively coarse mesh can be used to save computing time. This non-

uniform mesh can be transformed to a uniform mesh by using the general

coordinate transformation proposed in references (54,SS,561. The non-

uniform mesh and general coordinate transformation are discussed in

Appendix I.

The heat conduction equation (3.1) and (3.2) In the transformed

plane (E,rI) can be written as

(Al#.. 2A 2 .!- + L+A4!+A5# )/J2 it , =I,II (3.16)

* -2S-
|%
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where J=&.-- - I is the Jacoblan of the transformation, the
F ni _n_

subcrlpts (E,rFvr) denote partial derivatives in those coordinates

and time, respectively, and

A, = E_2 + q_.2, (3.17)
Ti '1

A2 = E-E- + rl q , (3.18)
E T1 E n

A3 = E_2 +.n_ 2  (3.19)

,A = lE-A 7 - i 3.20)

As = (T) A6 - .A 7 )/J , (3.21)

A6 = AIE..- 2A2E- + A3 E... (3.22)

A7 = Alvi 2A2ril *n A3 T).. .- (3.23)9=-.,

In the coating layer, the transformed heat conduction equation

(3.16) In the difference form is

*(ijn) : *(ijn-1) + AT AA , n=1 (3.24a)

S..T 4 (i,J,n-) + 4#(1,J,n-1) + - AA) n>1 (3.24b)

where

-26-



AA I (A1,/6Z2 $1(iJi) -241(i~j,n-1) + (i+I,j,n-1)]

5, ~~~ ~( 3 /A/Cn2)$~~~iirii~ (1(i,J-i~n-i) - (i-1i,ji,n-i) +

+ 41 (i-,J-I,n-)J + (A/ 2 ) [$ (i,J-,n-) - $'(iJ,n-i)] +

*(i,J~i) 1) *IJn1 +A/~ A- 1 (i1Jn1 AA * (-1J(3.26a)

*(A 3/2~n) I-# (i,J,n-) + 4# (Ji,jr-i)]J (325

AAAi~~ = (A b2 E#(i ,J,n-1 - 2#AA , Jn1 + ~ (3.26a~-)

(j#l -( ... *Aln-1 i , 2 A$ (,J,n-1 -+#11,~-)

I-2-



(i,J+I,n-1] + (A4/2AE-) [*i11 +IJ,n-1) - 11(i-i,J,n-i)]+

*CA3 /2Arj) [*1 1(1,j+i,n-1) - +1 (i,j-l,n-i)J)/J2 (3.27)

At the outer boundaries of the rectangular region (excluding the

surface), +O(i,j,n)=O is the nominal value. The remaining conditions,

on the surface, the cavity boundaries and at the Interface, will be

Incorporated with an energy balance scheme.

3.2 Enerzy Balance

(The cavity boundaries, the moving asperity and the interface of

the medium are taken care of with the use of the energy balance

,' method [S7.

aa', (1) Energy balance at the Interface (see Figure 3.2)

For material I (coating layer), the heat fluxes toward the central

point P of the element at the interface from material points W, R and S

in the coating layer are

.Z* = k (Ay/2) , (3.28)'I Ax 1

=  (Ay/2) T(I.xJ) - i,J) (3.29)

( 2 )T(i,j-1) - T(ij)
S 2 Ay '

where Q is the heat flux, indexed by the direction.IFor material 11 (substrate), the heat fluxes toward the point P

from material points IJ, R and N in the substrate region are

k -28-aN N
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XIOP k(AY/2) T(i-iJ) - T(i,j) (3-31)

T(i+i,J) -T(1,j)

()R-= k 11(0/2) ,X (3.32)

QsOP kU 1X +X2) T(i,j+1) - T(1,J) (.311 2 ay

The total heat flux going to the Interface point P(i,j) is

QwUM= (k+ k )(Ay2)ET(i-1,j) - T(i,j) -T(i+i,j) - T(i,j)+

AX +k( &2  T(i,j-1)-T(i,j) Ax *tAx T(i,j~i)-T(i,j)
+ 2 Ay 2k1  A....L....Z (334

The rate of change of internal energy Uin the time interval At at the

point P(i,j) is

JP = 61P+U 2 P

6P= (Pc +P MAX Ay T(i,J,n)-T(I,j 'r-i) = (35a

= (1c1 P~cAY 3T(i, j,n)-4T(i,jn-i)4.T(i,j,n-2)

n>1 (3.35b)

Conservation of energy requires that the algebraic sum of the heat

flowing Into the point P Is equal to the rate of change of internal

energy at the savne point (Q.,i P ). From conservation of energy, one

-30-
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can obtain the equation for the continuity condition at the interface

point P(i,J) at the time step ni.

*T(i,j,n) = T(i,J,n-i) + A n=1 (3.36a)

T(i,j,n) = - [-T(i,j,n-2) +4' T(i,j,n-1) + 2AA1 I 0 1 (3.36b)

where

AA, = pP c ti Ih 2+&)C1 6X2 ET(i-I,J,n-.) - T(i,j,fl-1)]

Ax~x~~x 2 CT(I+1,J,fl-i)-T(I,J,fl-1)J + r-(~.-1ti

-T(i,j,n-1)J + 2kI~ I T(iJ+in-i) - T(IJ n-I)]) (3.3'D

* Equations (3.36a,b) in dimensionless form are given by

*(I,J,n) = *(i,J,n-I) + M2 ,n=1 
(3.38a)

#IJn) = [-#(i,j~ir2) + 44(i,j,n-1) + 2AA2] 0 n1 (3.38b)

where

AA2  R (4(iiJn-1 A-2A +(~~-)

-31-



- n( (3.39)

where 1 k = k 1k

Details of the energy balance method on the other boundary

conditions are given in Appendix III. The dimensionless form of these

boundary conditions are listed below.

(i11) Energy balance on the cavity boundaries (see Figure 3.3)

On face AB:

b9

i ,j,n) = (,j,n-1) + A6A3, n=i (3.40a)

. (i,j,n) = (1i,j,n ) + 44,j,n-1) 1 , (3.40b)

,':! where

: AA3 = I{l(1-1'J'n-1) "21(itj'n-l) + l(i+1'J'n-i)]/&E2 +

+ 2[4 (1,J-l,n-1) - l Tll,j~n-i)]/Aq2) ( 3.41)

I I n1 34a

' 'I.1,,n) = #(1,J,n-1) + ,A4 n=,34a

(i,j,n) _ - (-4 (I,j,n-2) *44 (i,j,n-l)+2AA3 ] , n>1 (3.42b)

.J

where

. . .- 32-
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Figure 3.3 Energy balance on the cavity boundary.
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.

whe r

Ax II 11 (
e, AAs - M[ (i-i,j,n-1) - (i,j,n-1) + (i+i,J,n-i)]/ z +

is.r

+ 21t 11 (ij+1,n-1) - S (i,j,n-1)I] (3.47)

(111) Energy balance at the corner of the cavity (Figure 3.3)

The points at the four corners of the cavity are singularities,

because at each of those four points there are two boundary
p5"

conditions, BT/ax1 = aT/8x 2 = 0, with only one unknown T. However, by

applying an energy balance scheme, one can resolve such problems at

the corners. The dimensionless form for the corner points are:

Corner A:

f(i,j,n) = f(i,J,n-1) + AA., , n=l (3.48a)

#(i,J,n) = [-(i,J,n-2) + 4#(i,J,n-1) + 2AA 7 1  n>1 (3.48h)

where

Z ' 1+71

AA = /2 "k R [#(i-1,J,n-1) - #(i,j,n-1)]/ E2 +

1 Il1k+ - [#(i+I,I,n-) - n-1/A + -[#(i,J+I,n-1)

2 (~-)/2 +2-

- *(i,j,n-1)]/A 2 + [O(i,J-,n-1) - #(i,j,n-t)]/6n2] . (3.49)
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Corner B:

f(i,J,n) *(i,j,n-1) + AAs ,r=1 (3.50~a)

*(ij~r) t-(ij~n2)+ 4t(i,j,n-1) +2AA 81 , l) (3.50b)

where

R / k R 1

+'" [(i+I,j,n-i) - #(i,j,n-i)]/E 2 + lk*i-~ ~ ni

- *i,~n1)/A~ 2 + (4ijiii1 (i,j,n-1)]/&q2) .(3.Si)

Corner C:

ii (i,j,n) = #1(i,j,n-1) + AA9 ,n=l (3.S2a)

ii (i,j,n) = (-#4 (i,j,n-2)+4§ 1 (i,j,n-i)+2AA9 ] , nl (3.52b)
4/~~ 3

where

AA9 U(24 (i-i,J.n-i) - 3#11(j,-1) + # 1 1 (j+I,J,n-i)]/AE2 +

+ (1 (1,J-i,n-1) - 3#11(i,j,rt-1) + 2# 11(i.J+,n-)]/ATiz1. (3.S3)

-36-
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Corner D:

(i,j,n) # 91(1,j n-i) 4AA 1 o n=f1 M3S4a)

where

M1 0 = (i,J,n-1) -34 11 (i,J,n-1)+ #1iJn1]A2

+ [41 (iJ-i,n-i)-3#"(i,j,n-I)+20 1 (i,j+i,n-i)J/An2).(3.SS)

(1v) Energy balance on the surface boundary (the moving asperity)

The dimen~sionless form for the surface boundary condition is:

*r
(iI~)= ~(i,1,n-1) + (i+h')- + A.A19 n=1 (3.56a)

(i,i,n) [- I- (1,1,n-2) + 4# (i,1,n-I) + (i+h)- + 2AA113

n=2 (3.S6b)

where h'=h/(Ax/2), h is defined in Appendix III, and

AA+4 tk,1ni]/E

Equations (3.24, 3.26, 3.38, 3.40, 3.42, 3.44, 3.46, 3.48, 3.SO,

f
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-: 3.52. 3.54, 3.56) constitute the general formulation of the problem

with a complete set of difference equations for the solutions of the

discrete temperature field f$(i,J,n)J at some specific time. The

" computer programs which are used to compute the temperature field

solutions are given in Appendix IV.

3.3 Nmeirical Results

Numerical results are obtained by using the non-uniform rectangular

mesh corresponding to different cases of material properties and

geometry. For the surface layer of silicon carbide, k =1.047

J/cm.OC.s, K,=0.49 Cm2/S, and c,=712 J/kg.OC. For the substrate of

aluminum, k =2.02 J/cm.OC.s, K =0.961 cm2/s, and c =917 J/kg.OC. The

other numerical parameters on the asperity and the cavity are: v=15

mis, w=iOa, H=i.2a, b=1.9a, d=0.3a, e=O.Sa, a=imm, the smallest AE and

An are 0.02 and 0.01 respectively, and Aj=0.01. In the limiting case

of no cavity, the maximum dimensionless temperature at the surface of

the coated media was found to be 0.124 by using the Fourier transform

method [33, 34). The result at the same point by the current finite
.

W"%. difference formulation is 0.123. The error is less than iZ. The

numerical scheme is therefore confirmed by the benchmark problem.

The solutions for a single material with and without a cavity would

then be compared with two limiting cases. For the first case, the

e .cavity is located entirely in the surface layer, Figure 3.4a. In the

* second case, the top edge of the cavity is at the layer/substrate
w'. -.,

interface, Figure 3.4b. The solutions for the single material without

and with a cavity are designated as the third and the fourth cases,

respectively, included for the purpose of comparison. Different cases

of the temperature fie]d solutions are given in Table 1. In Case 1,
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Table I

I. case kI  k1 1  (Pc) (PC) KI  K I L cavity location

IB I h (C () IK K 00 otn ae
IA 1k 1k I(pc) I(pc) 1K 1K 0.04 coating layer

2 1I IT I ITlB 71k 1k 7(pc) 1(PC) 1K 1K 0.06 coating layer
, IT I II I II

IC Ik 1ih I(pc)I 1(pc)1 I 2KI  1K I 0.04 coating layer

ZD 1k 1 (pc) 1(pc)i 1K 1KII 0.04 coating layer

2E 1k 2k 1(pc) 1(pc) 1K 1K 0.1 coating layer

2C Ik 'k (pc) !(PC) U IKI 0.04 Interface

2D 1k1  2k I(pc) 2(pc) IK 1K 0.04 interface

2E Ik 2k 1(pc) 1(pc) IK 2K 0.04 interface

3 k ~ 1(PC)1  UK no cavity
IvI

-'4 Ik 1(pc) IK 0.04 single materil

Ie * Base materials for the coating layer and the substrate are silicon

carbide and aluminum, respectively.
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v./, .d / COKTING LAYER

S'.%

.:. (a) cavity is in the coating layer

V ASPEITY

COTIE LAYR

INTERFACE

S. 
SUBSTRATE

(b) top edge of the cavity a at the interface

Figure 3.4 Ilkerical *xamples vlth different cavity

position.
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*three different values of the ligament thickness: 0.04 (Case IA), 0.06

(Case 1B), and 0.1 (Case 1E), are used to illustrate the effect of the

9ligament volume. The temperature fields at two depths, for all three

Cases iA, 1B and 1E are shown in Figure 3.5. In the figure, the cavity

width is from E=1.6 to 2.2. The asperity position, at the dimension-

less time T=1.04, respresenting the worst case, is from E=1.2 to 2.2.

The relative positions of the asperity and the cavity is shown in

Figure 3.6.

The Case IA then is compared with Case 2 of the same ligament

thickness for which the top edge of the cavity is at the layer/

substrate interface. The effect of the relative position of the

cavity to the interface is shown in Figure 3.7. It is noticed that

when the top edge of the cavity is at the interface, the temperature

field in the region immediately on the trailing edge of the asperity

will be affected by the substrate material.

The effect of the heat capacity and thermal conductivity of the

surface layer for Case IA is shown in Figure 3.8. The figure shows

the original value as Case IA. Case IC represents a reduction of

thermal capacity of the surface layer by half. Case ID shows the

result of an increase in thermal conductivity of the surface layer by

75%. The thermal conductivity of the surface layer is shown to have

little effect on the nondimensional surface temperature. But the real

temperature field, T=qoai/k, is lowered with increasing thermal

conductivity kI"

Figures 3.9 and 3.10 illustrate the effect of a cavity on the

direction of heat flux. The figures show the nondimensional heat flux

components in E and n directions of a single material without a cavity

-41-
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* 2.2

1.2 eASPERITY

.4,

-. CAVITY
P

,

Figure 3.6 The relative positions of the cavity and the

aperity atT= 1.04.
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(Case 3) and a layered medium with a cavity (Case IA). From the

figures, it is observed that, with no cavity, the heat flux at E=2.2,

and n=0.04 has a magnitude of 0.7 at an angle of 820 to the wear

surface. With a cavity, at the same location, the magnitude is

Increased to 1.5 at an angle 230 to the wear surface. Hence, the

existence of the cavity will increase the heat flux tremendously,

especially in the E direction near the upper trailing corner of the

cavity. Figures 3.9 and 3.10 demonstrate not only an increase in

magnitude of the heat flux, hence the temperature gradient, but also

the flux at a more oblique angle to the wear surface.

* Ju [28) has studied the effect of thermal properties of a single

material subjected to the high-speed asperity excitation. It was

pointed out that thermal conductivity (k) and thermal capacity (pc) are

the parameters controlling the temperature field. For layered media, a

similar effect was found by Ju and Liu [35). For the case of a layered

medium with a cavity, the thermal property variation in the coating

layer can be accordingly extrapolated. It is the effect of the

substrate In the neighborhood of the cavity that would be influential

in determining the temperature field in the critical region. The

* effect of thermal property variation for the substrate is therefore

studied numerically for the Case 2, for which the coating substrate

interface is at the top edge of the cavity. For this case, the thermal

properties of the substrate will be of immediate influence to the

temperature field In the vicinity of the top trailing corner of the

cavity. For the purpose of demonstrating the individual effect, a

benchmark case is chosen for comparison In which both the coating and

the substrate are of silicon carbide, (k =k 1.047 J/cm.OC.s,
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=K 0.49 Cm2/s, p cP C 2.1 37 J/cm 3 .C), designated as Case 4.

Figure 3.11 illustrates the temperature field near the top surface 
and

at the coatIng/substrate interface for cases with marked changes 
in

4) thermal properties from those given in Case 4. Case 2B shows no change

in the substrate diffusivity, but both the thermal conductivity 
and the

thermal capacity are doubled. The ensuing improved conductivity and

capacity in the substrate allow a significant heat flow into 
the

substrate; thus a high temperature gradient is also found. 
The Case

2C, at the same diffusivity, but with both the thermal conductivity 
and

the thermal capacity halved, shows a reduced heat flow into the

substrate, with a corresponding low temperature gradient. Cases 2D and

2E, with doubled diffusivity, but with half capacity and 
double

conductivity, respectively, showed reduced and increased 
heat flow into

the substrate, respectively. The beat flux, being proportional to the

temperature gradient, is illustrated in Figures 3.12 and 
3.13 for the

surface region and at the interface.

Figure 3.14 shows the transient temperature for Case 
IA (cavity in

the coating and ligament thickness of 0.04) irt comparison 
to the case

of a single material without cavity (Case 3). The dimensionless

temperature, *=TkI/q 0 a, plotted against dimensionless time, '=vt/a, at

the surface and at the ligament depth, q=0.04, for the 
position E=2.2,

where the temperature is maximum In the vicinity of the cavity. It is

*" shown that, before the asperity reaches the point, the temperature is

low. Then the surface temperature increases and reaches a maximum

when the asperity just passes over the trailing edge of 
the cavity.

Pi C After the passing of the asperity, the temperature at the trailing

corner of the cavity drops again.
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CHAPTER 4

STRW 9JLTIYC1

Ju et al 128,29,30,31,32,33,34] established that, for a moderately

high-speed asptrity excitation, the thermal stress effect dominates the

stress field and eventually leads to failure in the no-cavity case.

larger than 0.127 in/s (5 in!:), the thermal stress dominates the

faiure an th mehancalstress becomes less important. However,

the echnicl sres ma no betriialwhen a cavity exists.

Therefore, both the mechanical and thermal stress field will be

presented in this chapter.

The thermoelastic Navier's equations and the Hooke's law in

- . dimensionless form are:

a auO a avo a a V4 a auO

a 6My a2UO

BE c2
2  ) 5f 2  41

a BVI3 a aO a a a o
(~N3 T) + -(N 2 5T-)+ j (N 3 -)r + - (NI

#0 )2 M

2
6 N u av byN (4.3)P 0 N 1 3 N2 i- C 2

','2

)12 auo avB
3~~ 6N~ + (4.4A0

and
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C2

06 6 N2u+ (4.5)

where uA and vO are respectively the dimensionless stress modulated by

the average pressure Po; M=(v/c 2) is the Mach number; V is the

asperity speed; N1 =(X8 + 2v)/PiiC2 ; N2 =X /pIIc2 ; N3 =V 0/p 1 C 2 ;

y 2/k 6=p /p C1 = [(0 + 2p )Up ]1/2,

= (pi I/P )1/2 are the dilatational and shear wave speed,

respectively; E, n, -t, X, p 0' a' P and 4A were defined in Chapters 2

and 3.

Equations for the mechanical stress field are the same as the

thermal stress field except that there is no temperature effect.

4.1 Perturbation Method

40
For hard wear materials, such as Stellite I1, the Mach number M is

of the order of 10- 3 . Since M2 is a parameter which is sufficiently

small, Equations (4.1) and (4.2) can be solved by the perturbation

method.

Let the solutions to (4.1) and (4.2) be expressed as a power

series of c=M2; that is

U(E,,,,C) = U(Enl) + CuO(E.n.-X) + C2u (.,.,) + .... (4.6)

) v ( .n.,t) + EVS(E.n.-E) + C2v§(E.rl.E) + .... (4.7)

when equations (4.6) and (4.7) are substituted into equations (4.1)

and (4.2), the terms with the same power of c are grouped, leading to

uO, up un § v #a
a set of equations for u, , , ..... and v, v, v, .... as
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follows:

For the terms of the zeroth order in C,

a u a av4 a avg a auft
+~ ~ -(N3 -)8j

2

a~ ( b 13Y (4.8)

a soa u a a~ a
(N - E) + an (N -)+ + -(NI an

'Va b 1Y O 4 9

0For the terms of the first order in C,

a u a av v a auta N- + -(N-)I + -(N 1)a~a(N~ a (N3-) a~

a UOO (4.10)

a a8 a auO a au O a aI
(N 0 (N + ) + i- (N N-,

BE: (3a BE+(n 2a BE 3-an) + Nan

For the higher order solutions, it is evident that the equations are

,. recursive. Accordingly, the recurrence formulas can be written as:

a aAO a avf a avq a (3auq
SN 1 ) + - )N +r r (N 3 ~ N r

a 2~u
=
6 i0 o c 2 * + (1 -6 1.)6  ,(4.12)

elK -S6-



a avq a auq a auq a f
(N 3 - ") +N - + (N3 - ) + - (N - )

si (4-A 3o)

aE i i °ola ( ~) 
(r13

2an C 2  2  ( . )

where 6jo is Kronecker delta.

Similarly, we can obtain a set of equations for the stress field as

follows:

For the terms of the zeroth order in c,

2

ug NB+ N arl c3 "A

For the terms of the first order in ,

P o N a 2 v bn 2  '

PO 2 c2

Oct, aug ave

2O
6N3 ( + ) (4.16)

rar = Po N2" 1 

4 

C.2

The recurrence formulas for the stress field are

aua Yv

Nu6 (N N -
) 

(4.20)

P2 -S7N-(an a 
( .8

POY 
€

baY



% ,

SN a~ v (4.21)-PO 6N3 (- + -E

o S 6 ( N- + N -_ _ (4.22)
Sq 0 PO Iarl c2

The boundary conditions are as follows:

For the zeroth order solutions,

(i) the surface (c(t)/a < c <c(t)/a + 1), n=O) is traction prescribed

0 1  = G (4.23)

00." = -G , (4.24)
rjr)

where

G = { P'(E) , for the mechanical stress field
S0, for the thermal stress field

(ii) the regularity conditions at infinity, E2 +q 2 -m, are

u~ v,~ c~=0 ,(4.25)

(iii) the continuity conditions, at n=O, are

=I = V II (4.26)
0 0 0 0

a 0c 01 001r = 0011 (4.27)

t -S8-



(iv) the cavity boundary conditions are traction free.

For the nth order solutions, the surface is traction free and the

remaining boundary conditions are the same as for the zeroth order

solutions. The solutions of each perturbative order can be obtained

by applying the finite difference method.

4.2 Difference Formulation

Because of the complexity of the geometry and the boundary

conditions, the finite difference method is considered more appropriate

than the transform method, which was used in the cases without a

cavity. In this section, only the zeroth order solutions of the

thermal stress field will be discussed in detail, the solutions of

higher order and the mechanical stress field can be obtained similarly.

In the finite difference method, the semi-infinite body is replaced

by a sufficiently large rectangular region (Figure 4.i), and a non-

uniform mesh must be used as we stated in Chapter 3. The non-uniform

mesh is transformed to the uniform mesh by applying the general

coordinate transformation (Appendix II). The stress field can then be

solved in the transformed plane (computational plane) (F,r). The

finite difference form of the thermoelastic Navier's equations (4.8)

and (4.9) in the computational plane (E,rj) can be written as:

atv$(i-i,j-l,n) + a2uO(i-1,j,n) + a3vA(i-i,J+i,n) + a u(i,J-i,n) +

+ a~uO(i,J,n) + auv(i+ (i+,j-i,n) + aeuO(i+lJ,n) +

b~y

+a (i+iJ+l,n) = a #(1 ,j,n)] (4.28)
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and

a1 0uO(i-l,J-1,n) + a 1 vi(i-l,j,n) + al2uO(i-l,j+l,n) +

" a1 3vO(i,j-i,n) + a,4v4(i,j,n) + a1,vg(i,j+i,n)+a,,uB(i+i,j-l,n)

" a 1 .v$(i+t,j,n) + a19UO(i+1,j+1 ,n) 1 3YO [-- O*(i,j,ri)J ,(4.29)

where

a, N(i1j + N(,-)/~r ,(4.30)

a2 =N 1 (i- 2 j)/(E 2 AE 2 ) + N L(i,j)E..U./ME .3AE) ,(4.31)

a3 = -(Nz(i-1,J) + N3(i,J+1)J/(4E n-~ArIn) ,(4.32)

a4 = N3 (i,j- 2)/(ri32ri
2) + N3 (i,j)1..../(2I1_

3&i) ,(4.33)

I4 I

a5 = -[N (i+-,J) + N (- 4 )/F 2AE2 ) -

- N3 (i,+ 2+) + N3~ (i ,j- 2)J/(r1. 2 Arl) ,(4.34)

86 = N3(j 2/nA ) - N(jn-/2_n)(4.35)

a./ = -[Nzilj + (4.36)

IE (
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a9 = N2(i+i,J) + N3(i,j+1)]/(4E ..AE~n) ,(4.38)

a1 0 = N'2 (,j1l) + Ii3(i-1,j)JI(q...LEr1 ) (4.39)

a, N3(i- 2,j)/(E 2.AE 2 ) + N3(i,j) /(2E E 3 E) (.0

a12 =-(N 2(i,j+1) + N3 i1jJ(Er-~r)(4.41)
Ern

a,3  NI N(i.j- 2/(rn-26nT2 ) + N~~~-/2_6)(.2
n ini T)

a,4 CN3i- 2J) N3(1+- j)]/(E .2AE 2 )

- NI(i ,j+ 2 + NI (i,j- 2)J/(Ti32r) 2) ,(4.43)

&s5 = N,(i,J+)/(n..2 AT 2 ) - NI(i,j)n.../(2n_.3 Anr) ,(4.44)

16= -[N2(i,j-i) + N3(i+1,j)J/(4E-i-AEi) (.S
E n

IT

The traction surface boundary conditions are expressed in terms of

the displacements:

- v(i-,in)/2F:..tF: -3uI(.1,1,n)/(2i-ATi) + 2uI(i,2,n)/(T..AT)-
F: TI TI

-62-
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-UI(i,3,n)/(2ri-Ari) + vl(i+1,1,n)/(2E-AE) = 0 ,(4.48)

r)

and

-N2 (i,I)u
1 (i-i,fln)/(2L-AE) - 3N1(i,i)V'(i,i/(2r-Ari) +

Ti

" 2N1(i,1)vI(i,2,n)/(Ti-A&) -N,(i,i)v'(i,3,n)/(2i-Aq) +
Ti TI

'II'j

2 N(i,i)ul(i+1,i,n)/(2E AE) = .L~~~~).(4.49)

The traction free boundary conditions on the cavity (Figure 3.3)

4,4 are:

On face AB:

-v'(i-1,J,n)/(2E-A ) + u'(i,j-2,n)/(2q-Aq~T) - 2ul(i,J-,n)/(n-Aqr) +

+ 3ul(i,j,n)/(2n-Ani) + vI(i+l,j,n)/(2E..E) =0, (4.50)

4 and

-NZU ,j)uI(i-1,J,ri)/(2E A ) + N1(i,j)v(i,j-2,l)/(2n--r1)-T)

-2N 1 (i,j)v'(i,J-,n)/(i-Aq) + 3N1(i,j)vI(i,j,n)/(2i-ATi) +

hrl
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On face AC:

+N,(i,j)U''(i-,j,n)/(k EC)+ N(ij)v'(i,j,)/(2n&-q) +

F:)

bilyll(4.52)

and

-VII(i-i,j,n)/(E-hZF) -ull(i,j-,n)/(21-Ar,) + vII(i,J,n)/(F:-A) +

+ U'i(i,j+,i)/(2n-A) =0 ,(4.53)

n1

On face BD:

- N 2 (i,j)vll(i,J-I,n)/(2q Anr) - N(i,j)ull(i,j,n)/(L AEF) +

+ N 2 i,J)vII(i,j+i,n)/(2n 6ri) + N(i,J)uIX(i+i,j,n)/(:-AF)

biy (4.54)
C 2

and

-urz(i,J-1,n)/(2l-t11) -vrr(i,j,n)/(:-AF) +

+ U"I(i,j+,n)/(2i-,A) + vll(i+1,J,n)/(:E: 0,(.S

t -64-
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On face CD:

_ v1I(i-1,J,n)/(2E - 3uI1 (i,j,n/(2)_A.r) +

,F;

+ 2uIl(i,j+1,n)/(j_An) - uII(i,j+2,n)/(2n_Aq) +

.' rr)

+ vlI(i+,j,n)/(2kAz) 0 (14.56),+i E

and

- N2 (i,j)u
11(i-1,j,n)/(2E-AF) - 3N1 (i,j)vri(i,j,n)/(2n-A) +

,,. 
F;

+ 2N1 (i,j)vr1 (i,j+,n)/(.Aq) - N+iJlv''(i,j1,n/(2idr1 *

+ N,(i,J)uII(i+I,j,n)/(2EAE) - (4.57)l F; c2
2  '$1 i J n ,( . 7

where *O(i,j,n), +AO(i,j,n)/3E, and 8*8 (i,j,n)/BI are input data

obtained from the temperature field solutions (re: Chapter 3).

4.3 Cavity Corners Singularities

When values of a solution of a boundary-value problem or its

derivatives approach infinity at points, lines, or surfaces in the

domain, the solution is said to possess singularities at these places.

The approximation of functions with sitguierities presents some serious

numerical difficulties. Nevertheless, calculation of solutions with

R singularities is extremely important; such problems arise in fracture

mechanics, various flow phenomena, heat conduction problems, and in
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fact, in any boundary-value problem in which strong irregularities

occur in one or more of the following: (a) the geometry of the domain,

. (b) the coefficients in the governing differential equation, or (c) the

prescribed functions, and so on.

Despite the difficulties, numerical methods can be devised that

yield excellent results for singular problems. Basically, there are

two general ways the problem can be approached:

Nonuniform Meshes: This means that a finer gradation of the mesh

is used in the neighborhood of singular points in order to capture

large changes in the gradients of the solution nearby. This is often

a straight forward and effective way to handle singularities and it

requires no special modification of the code or special elements, but

it may be expensive owing to the necessity of a large number of grid

points.

Special Singular Elements: The scheme in this case is to devise

special elements in which the approximation simulates the diverging

rate in elements in the vicinity of the singular point. However, this

method can be used only when the behavior of the singularity is known.

The procedure of this method is to assume a series which consists of

both the regular terms and the singular terms. For thermomechanical

problems, the series form of the asymptotic expansion can be written in

the form [59,60,6i,62,631:

u(r,O) = regular term + Anrnr/ f(e) (4.58)

where r, 0, and C are defined in Figure 4.2. Indeed, when r/C is not

an integer, the derivatives of the leading term in the singular part of

0 V" -66-
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Figure 4.2 Polar coordinates for a domain

with a corner at p.
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u may become unbounded. The order of the singularity increases as

increases. If r/C < 1, P is referred to as a reentrant corner and the

first derivatives of u are then unbounded as r4O. For the present

problem, C=3n/2.

For the current problem, the stress singularity at the cavity

corner can be resolved by using the results of Williams [641] and Sih

[65). The series form for the displacements in the neighborhood of the

cavity corner are:

u(r,O) = atr2/3cos(20/3) + a2 r2/3sin(26/3) + a3r2/3cos(40/3) +

* + a4 r2/3sin(40/3) + asr/3cos(4e/3) + a6r4/3sin(4O/3) +

+ regular term , (4.59)

and

v(r,O) = bir2/3cos(20/3) + bzr2/3sin(20/3) + b3 r2/3cos(40/3) +

'.

4, + b~r2/3sin(40/3) + bsr4/3cos(4O/3) + b6r4/3cos(4O/3) +

+ regular term . (4.60)

g In the special elements, parts of the coefficients of the series can

be determined by substituting equations (4.59) and (4.60) into

Navier's Equations (4.8) and (4.9) and the traction free conditions on

the cavity. The remaining coefficients can then be solved by using

the difference form (4.28) and (4.29). As illustrated in Figure 4.3

-68-
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for one specific corner, one can use Equations (4.8) and (4.9) at

points 3 and 7 and the traction free condition at point 5 incorpora-
.5

ting the singular behavior; then one can use the difference form
5-

S (4.28) and (4.29) at points 1, 2, 4, 6 to determine the other

coefficients of the series.

Equations (4.28, 4.29, 4.48, 4.49, 4.50, 4.51, 4.52, 4.53, 4.54,

S4.$, 4.S6, 4.57) and the special elements compose a complete set of

difference equations for finding the stress field. For the zeroth

order solutions, we have to solve a set of simultaneous algebraic

equations, which can be separated into two groups, depending on whether
4-

the coefficient matrix is dense (few zero elements) or the coefficient

matrix is sparse (many zero elements). The two commonly used methods

of solving simultaneous algebraic equations include the direct method

and the iterative method (66, 67, 68, 69, 70, 711.

* Figure 4.4 shows the element pattern of the matrix for the zeroth

order solutions. It is a large, banded, but unsymmetric matrix.

Because of the dimension of the matrix (1 4400x4400), it is almost

impossible (too expensive) to store all of the elements. Fortunately,

the matrix is banded, therefore we can only store the elements inside

the bandwidth by using the one-dimensional array as shown in Figure

4.S, and then using Gauss elimination to solve the system. The

computer programs for solving the thermal stress field are given in

: 1Appendix IV.

. 4.4 Nmerical Results

For the numerical examples, Stellite III is used as the base

material. The mechanical and thermal properties of stellite III are:

E=240x10 3 Mpa, v=0.28S, p=8.3x1O 3 kg/m 3 , K=9.7 J/m'OK-s, K=2.77x10-6
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m2/s, a=11.3x10- 6 m/m•OK, and pf=0.5 . For this problem, the smallest

AE and Aq in the stress field are 0.02 and 0.006, respectively. The

total grid points in E and n directions are 67 and 35. The other

important numerical parameters are: V=15 m/s, w=30a, d=0.3a, e=0.5a,

and a=1 mm.

In the numerical results, the effect of the cavity location and the

effects of the mechanical and thermal properties on the stress field

are also studied. All figures (Figures 4.7 through 4.24) are plotted

for the worst case of the asperity position, that is when the asperity

is right over the cavity or when the trailing edges of the asperity and

the cavity are aligned as shown in Figure 4.6 (asperity position in

from C=-0.7 to E=0.3; cavity location is from E=-0.3 to E=0.3).

When the cavity is located entirely in the surface layer, because

the coating layer is thick, the effect is similar to the effect of a

single material [33,34,35]. Figures 4.7 to 4.12 plot the thermal

principal stresses along the asperity traverse direction at the

critical depth for the cases of a single material with a cavity.

Different cases of a single material with a cavity are tabulated in

Table 2. Figure 4.7 compares the dimensionless principal thermal

stress of the single material with (case IA) and without (case 2) a

cavity. The maximum dimensionless tensile thermal stress is 0.98 for

no-cavity case occurring at a depth q=0.16, while it is 5.9 at a depth

*. of 0.088 for the medium with a cavity at a ligament thickness 0.094.

The location of the cavity from the wear surface, as indicated by

the ligament thickness, influences the temperature field in the total

volume available for heat content generated by frictional heating. As

a consequence, the thermal stress state is strongly affected. Figure

0 -72-



Table 2

case k pc E a L cavity stress computed

1A lk 1pc 1E Ia 0.094 Yes thermal stress

C. lB 1k Ipc 1E la 0.06 Yes thermal stress

IC 1k Ipc iE Ia 0.122 Yes thermal stress

ID Ik Ipc iE la 0.19 Yes thermal stress

2 Ik Ipc IE Ia No thermal stress

3A lk Ipc IE Ia 0.094 Yes thermal stress

3B 2k Ipc IE Ia 0.094 Yes thermal stress

' 4A k 2pc IE Ia 0.094 Yes thermal stress

4B k ipc iE Ia 0.094 Yes thermal stress
|'.2

SA k pc 3E Ia 0.094 Yes thermal stress
1I

SB k pc 1E la 0.094 Yes thermal stress
2

, SC k pc 2E Ia 0.094 Yes thermal stress

6A k pc E 2a 0.094 Yes thermal stress

I
6B k pc E -a 0.094 Yes thermal stress

* Base material is Stellite III.
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4.8 shows the effect of various cavity locations on the thermal stress

field. Ju et al [27,32,58] showed that, without a cavity, the critical

depth at which the tensile thermal stress reaches a maximum is n=0.16

''' for a moving line asperity excitation over Stellite I1. However, with

a near-surface cavity, both the temperature distribution and its

gradients are different, thus changing the critical depth. The maximum

tensile stress is optimized with respect to various ligament thickness.

The worst case for the maximum tensile stress for Stellite III is

.-: .obtained when the top edge of the cavity is at n=0.094.

Figure 4.9 presents the effect of the thermal conductivity. Case

IA is of Stellite III. Case 3A shows the effect that the thermal

conductivity is reduced by half, while case 3B demonstrates the effect

S. that the thermal conductivity is twice that of Stellite III. Figure

4.9 establishes that the principal thermal stress increases with

decreasing thermal conductivity. In Figure 4.10, cases 4A and 4B show

the results of doubling and halving the thermal capacity, respectively.

We observe that decreasing heat capacity will increase thermal stress.

Figures 4.11 and 4.12 demonstrate the effects of Young's modulus and

the coefficient of thermal expansion. In Figure 4.11, Young's moduli

for cases SA and SB are, respectively, three times and one-half that of

Stellite III. In Figure 4.12, the thermal expansion coefficients for

cases 6A and 6B are, respectively, twice and one-half that of Stellite

III. These two figures clearly show that increasing either Young's

modulus or the thermal expansion coefficient induces higher thermal

stress.

When the top edge of the cavity is at the interface, both the

coating layer and the substrate will influence the stress field.

-76-
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Figures 4.13 to 4.24 show the results of the cases in which the top

edge of the cavity is at the interface. Different cases of a layered

medium with a cavity are listed in Table 3.

In the case of a medium with no-cavity, the effect of the

mechanical stress field is small enough to be neglected. When a cavity

exists, the effect of the mechanical stress field is no longer

negligible. Figure 4.13 plots the principal thermal stress field (case

7A), mechanical stress field (case 7B), and combined stress field (case,

7C). In this figure, the material of the substrate is Stellite III,

and the material properties of the coating layer are the same as

4Stellite III except that Young's modulus is twice that of Stellite III.

This figure establishes that the tensile thermal stress is larger than

the tensile mechanical stress. However, the mechanical stress field is

not so small that we can neglect it as indicated In the no-cavity case.

The effect of the cavity location on the thermal stress field for a

layered medium is presented in Figure 4.14. From this figure, one can

see that the maximum tensile stress occurs when the ligament thickness

L=0.094, which is the same value as in the case of a single material

with a cavity. Figures 4.15 and 4.16 present the effects of Young's

modulus of the coating layer and the substrate, respectively. In

Figure 4.15, the material of the substrate is Stellite III for all

cases. Young's modulus of the surface layer for different cases is:

case IA is the same as Stellite III; case 7A is twice that of Sellite

III, case 9A and case 9B are, respectively, three times and one-half

that of Stellite III. From this figure, one can see that the principal

thermal stress field is strongly influenced by the Young's modulus of

the coating layer; increasing Young's modulus of the coating layer will

-82-



Table 3
*

case k, kuj E, Err al ali L cavity stress computed

7A lk, 1kli 2E, 1EII 1 a lair 0.094 Yes thermal stress

* 7B 1k, 1k1I 2E, 1E1i 1a lair 0.094 Yes mech. stress

7C lk1  1k11  2E, 1Eir la2  lair 0.094 Yes combined stress

8A lk1  1ki 2E, 1E11  lar lair 0.06 Yes thermal stress

8B 1k1  1k11  2E, 1E1 I la1  lair 0.07 Yes thermal stress

8C lk1  lkzI 2E, 1E1I laI lair 0.12 Yes thermal stress

8D 1k, 1k11  2E, 1E1i 1ia lair 0.159 Yes thermal stress

9A lk1  1k11  E1  IEI I la, lair 0.094 Yes thermal stress

21
9B lk1  1kI, 3E1  1EI, la1  lair 0.094 Yes thermal stress

IOA 1k, 1k11  1E, !Err ia, lair 0.094 Yes thermal stress

I
lOB k IkI IEI IEii la1  1air 0.094 Yes thermal stress

IC 1k1  Ik1 1  IE1  SEII la, lair 0.094 Yes thermal stress

12A lk, IkI, IE, IEII 2ai lair 0.094 Yes thermal stress
I

12B lkI ikI1  1E1  1E 1  jai 0Ia1 1  0.094 Yes thermal stress

" Base materials for both the coating layer and the substrate are

Stellite 1ll.
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to i ncrease the principal thermal stress. In Figure 4.16, the material of

the coating layer is Stellite III for all cases. Young's modulus of

the substrate is one-fifth (case 10A), one-half (case 10B), and five

i0times (case 10C) that of Stellite III. This fiueshows that

%decreasing Young's modulus in the substrate will result in increasing

~the thermal stress field, but the influence from the substrate is

0 weaker than from the coating layer. Figure 4.1"7 compares the effect of

Young's modulus on the thermal stress field from a single material and

from a layered medium. In the figure, dashed lines represent the case

5"

a-5

of a single material with a cavity, while solid lines represent the

-: case of a layered medium with a cavity. From this figure, we observe

- that thermal stress Increases linearly In proportion to Young's modulus

,' for the single material case. For the layered medium case, however,

increasing by the same amount Young's modulus in the coating layer will

nresult In higher thermal stress than in the case of a single material.

This is because we will have a relative softer substrate by increasing

riYoung's modulus in the coating layer. The effects from thermal

a conductivity and the coefficient of thermal expansion are presented in

t taFigures 4.18 and fied These effects are similar to those found in the

case of a single material with a cavity.

From the failure specimen for the case of a single material th no-

cavity (Figures m .and 1.2), e observe that the thermomechanical

k cracking is perpendicular to the wear surface. Hoeve , Ju and Liu

[34] showed that in the case of a layered medium with no-cavty, shear

-.

delamnatlon (cracking is parallel to the pear surface may occur
' ncaused by the changing of principal directions (larger angle of

principal direction), therefore, it Is important to understand what

,, -87-
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will affect principal directions. Figure 4.20 shows the effect of the

ligament thickness (cavity location) on principal directions at the

point E=0.3 and q=O.O06 above the cavity top edge. From this figure,

we observe that increasing the ligament thickness will result in larger

angle of principal direction, and the angle of principal direction

changes drastically when L=0.094, the value which gives the maximun

tensile stress. Figures 4.21 and 4.22 compare the effect of Young's

modulus on principal directions for the case of a single material with

a cavity (dashed line) and for the case of - layered medium with a

cavity (solid line). These two figures establish that decreasing

Young's modulus In the coating layer (E ) or increasing Young's modulus

in the substrate (E ) will increase the angle of principal direction.

Nevertheless, changing Young's modulus in the case of a single material

S. ..- with a cavity will not affect the principal directions. Figures 4.23

and 4.24 illustrate the effects of the thermal conductivity and the

coefficient of thermal expansion on principal directions for the case

of a single material with a cavity (dashed line) and the case of a

layered medium with a cavity (solid line). From these two figures, one

can see that thermal conductivity and the coefficient of thermal

expansion will not influence principal directions significantly.
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.1 -----------

DISCUSSIONI AND CONCLUSIONS

The resent Investigation demonstrates the effect of a near-

surface rectangular cavity on the temperature and stress fields caused

by the frictional excitation of a moving asperity. The effects of a

coating layer are demonstrated by the material parameter variations in

the coating layer and the substrate, including changes on both thermal

y and mechanical properties. The mathematical model, because of the

geometry, is time explicit. Since the transient solution to a multiple-

boundary problem is always complex, numerical solutions become

necessary for analyses In specific cases. In the present problem, it

has been demonstrated that: (i) the transient governing differential

equations (2.1, 2.12. and 2.26), can be formulated in difference forms;

(ii) the nonuniform mesh (E,n), which must be employed due to strong

local effects, can be transformed into a uniform mesh (Z,q); (tit)

boundary conditions In temperature and/or heat flux can be expressed

through the energy balance method, thus avoiding the singularity

problem at the cavity corner; (iv) the stress singularity at each

corner of the cavity can be taken care of by embedding a known stress

singularity In the vicinity of the corner; (v) the numerical solution

can be tested by comparing with a known analytical solution, showing a

satisfactory accuracy; and (vi) the numerical scheme can be extended to

compute the solution for other geometries, such as those including

cracks and circular cavities, using proper coordinate transformations.

Like most numerical solutions, functional relationships can not be

-98-
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* obtained without voluminous computations. However, significant

conclusions can be reached through a careful selection of pertinent

cases for the numerical results. The conclusions for the present

* problem are:

Temperature field

I. Because of the discontinuity in heat transfer across the cavity,

* temperature will rise higher in the ligament region than the no-cavity

case.

2. The temperature rise is inverse to the ligament volume,

represented by the ligament thickness.

3. Increasing the thermal conductivity and heat capacity of the

coating layer, will decrease the surface temperature.

4. When the coating/substrate interface is at the ligament depth,

the thermal property of the substrate will influence the temperature

field in the region on the trailing edge of the asperity.

5. Because of the necessary heat transfer in the lateral direction,

the heat flux will be at a large oblique angle to the wear surface. In

the case of a layered medium without a cavity, the near surface heat

flux at the critical position is in a direction approximately 900 to

the wear surface. With the presence of a cavity, not only the

magnitude of the temperature gradient increases, but also the direction

of the temperature gradient is rotated to a more oblique angle to the

wear surface. This will affect principal directions in the thermal

stress field.

Strens field

1. In the governing differential equation, the small order

coefficients of the dynamic terms would have required an extremely

-99-



small time step for the consideration of stability and truncation

error. This difficulty was circumvented by using the perturbation

method. The solutions of the differential equations (4.12) and (4.13)

of the various perturbation orders are well-behaved. The

magnification, (ui+i/ui), is of order 102. Since c(=N 2 ) is of the

order 10- 6 , each perturbation term in equations (4.12) and (4.13) is of

order 10- of its preceding term. Because the series converges

rapidly, all computations are deemed adequate by using only one term.

2. When a cavity exists, the stress state that determines the

failure phenomenon is much more severe than in the no-cavity case.

This will lead to earlier failure of the mechanism.

3. The mechanical effect, which can be neglected in the no-cavity

case, is not negligible when cavities exist.

4. The effects of the mechanical and thermal properties on the

stress field are consistent with those obtained in the no-cavity case

in reference (32]. These effects may be summarized as follows: thermal

stress can be reduced by decreasing Young's modulus in the coating

layer, increasing Young's modulus in the substrate, increasing thermal

conductivity and thermal capacity of the coating layer, and decreasing

the coefficient of thermal expansion of the coating layer.

5. For a thin coated medium, the cavity location and the material

properties matching (especially Young's modulus) will influence the

principal directions of the thermal stress field. When the angle of

principal direction becomes larger, shear stress at the

coating/substrate interface becomes dominant, leading toward

delamination of the coating.

6. The location of the cavity influences the critical depth at
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* which the thermal tensile stress reaches a maximum. When the cavity

occurs closer to the wear surface, not only the critical depth is

*: reduced but also a higher stress results, which reaches its maximum at

* a critical ligament thickness. Further reduction of the ligament

,thickness would increase the ligament temperature, resulting in an

a, extension of the thermal compressive region therein. Correspondingly,

the thermal tensile stress decreases near the ligament region. The

illustration for Stellite III shows that the critical thickness is at

-Lcr=O.094 for both cases of a single material and a layered medium with

a thickness of approximately 40% of the critical depth of the no-cavity

case. For the normal design of coating thickness, the critical depth

of the specific coating material can function as a guide. However, if

cavities are either unavoidable or too expensive to control, the design

thickness should avoid the critical ligament thickness.
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APPUDIX I

"N' hWIKXCTIJK TO 111E FINITE DIFFEENE NHflED

.' The use of numerical methods for solving problems Is a result of

the complexity of the analytical solutions associated with practical

engineering problems. Often times, analytical solutions are

impossible. In engineering problems, factors that bring about the use

of numerical methods are complex geometry, nonlinearity, nonuniform

boundary conditions, time-dependent boundary conditions, temperature-

dependent properties, and so on. In some cases, analytical solutions

are possible, in principle, but the mechanics of obtaining the exact

solution may be much more difficult than the task of solving the

problem numerically. For example, in the problem of finding the stress

. solution of a composite multilayered body with nonhomogeneous boundary

"' conditions, it is relatively easy to set up the differential equations.

The solution, however, is extremely complex, because it is necessary to

C' deal with simultaneous partial differential equations. In all such

cases and many others, If one is equipped with the knowledge of

numerical methods and computer programming, the required solution can

be successfully obtained.

Finite difference approximations for derivatives were already in

use by Euler in 1768. The simplest finite difference procedure for

dealing with the problem dx/dt=f(x), x(O)=a is obtained by

replacing (dx/dt)n-1 with the crude approximation (xn - Xn )/&t.

This leads to the recurrence relation xo=a, xn= Xn-.+ At f(xn-ttn- )

for n 0 0. This procedure is known as Euler's method. Thus we see

-102-
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that, for one-dimensional systems, the finite difference approach has

been deeply ingrained in computational algorithms for quite some time.

1.1 Finite Difference Aywroximation of Derivatives Throwh

* Taylor's Series

The derivative of a function at a given point can be represented by

a finite difference approximation using a Taylor series expansion of

* the function about that point. Let f(x) be a function that can be

expanded in a Taylor series. Then a Taylor series expansion of the

functions f(x+h) and f(x-h) about x, as illustrated in Figure 1.1, is

L= given by

h2 h3
f(x+h) = f(x) + h f'(x) + 2!. f"(x) + 5- f'.(x) + .... (1.1)

h2  h3
f(x-h) = f(x) - h f'(x) + i. ft'(x) - Ti- f'''(x) + ... (1.2)

where primes denote derivatives with respect to x. The first- and

second-order derivatives f'(x) and f'(x) can be represented in the

finite difference form in many different ways by utilizing Taylor

series expansions given by equations (I.1) and (1.2) as now described.
First Derivatives

To obtain expressions for the finite difference form of the first-

order derivative f'(x), equations (1.1) and (1.2) are solved for

f'(x). We, respectively, obtain

f(x+h) - f(x) h h2

f'(x) = h 2 f"(x) - f"'(x) + .. , (1.3)

f(x) - f(x-h) h h2

f'(x) = h + - f''(x) - - f''(x) + ... . (I.4)
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Subtracting equations (I.1) and (Q.2) and solving for f'(x) we obtain

'

f(x+h) - f(x-h) h2
.4f()--f'''(x) + ... , (1.'$)

2h

From equations (1.3) to (1.5), the following approximations can be

written respectively for the first derivative of a function f(x) about

the point x.

.1f -f

f! +± h + O(h), forward difference (1.6)

f f

f -f

f, _ 4- 0 (h), backward difference 1.7)

i -i -+ 01h 2 ), central difference (1.8)
x 2h

here the notation O(h) is used to show that the truncation error

involved is of the order of h; similarly 0(h
0 2 ) is for the truncation

error of the order of h
2 , and

x ih, x+h = (i+l)h, x-h = (i-i)h, etc, (1.9)

f(x) = f 1 f(x+h) = f+9 f(x-h) = f , etc, (1.10)

as illustrated in Figure 1.2. We note that forward and backward

differences are accurate to the order h whereas the central difference

expression is accurate to the order h
2 . More accurate expressions can

be obtained for the forward and backward difference representation of

the first-order derivative as will be dicussed later.
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Second Derivatives

We now proceed to the finite difference representation of the

second derivative f''(x) of a function f(x) about the point x. To

obtain such results we consider a Taylor series expansion of functions

f(x+2h) and f(x-2h) about x as

4
f(x+2h) = f(x) + 2h f'(x) + 2h2 f''(x) + 3h 3 f ...(x) +*., (1)

4
f(x-2h) = f(x) - 2h f'(x) + 2hz f''(x) - -- h3 f'...(x) + .. (1.12)

* Eliminating f'(x) between equations (1.1) and (I.11) we obtain

* f(x) + f(x+2h) -2f(x~h)

f''(x) = 
2

- h f... (x)*..,(13

Similarly, eliminating f'(x) between equations (1.2) and (1.12), we

find

f(x-2h) + f(x) -2f(x-h)

Eliminating f'(x) between equations (I.1) and (1.2) we obtain

f(x-h) + f(x+h) - 2f(x) I
f''(x) =h

2  
-2 h2 f'....(x) +.. (15

Using the subscript notation defined by equations (1.9) and (1.i0),

various form of the finite difference representation of the second-

order derivative f''(x) about the point x given by equations (1.13) to
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* (I.1S) are written, respectively, as

f - 2fi~ *fl
fee = 1 2 ii + +2 + 0(h), forward difference (1.16)

f -2f +f.
f i2 h2i 1 + O(h), backward difference (1.17)

f - Zf. +f
h2 1

fi f i-1 h + + OW(h2 ). central difference (1.18)

We note that the central difference representation is accurate to

O(h2) whereas the forward and backward differences to O(h).

Mre Accurate Finite Difference Reprementations

The forward and backward finite difference representations given

above are accurate to O(h). More accurate expressions can be obtained

as now described. Suppose f'(x) is to be represented in forward

difference to O(h). Equation (1.13) is introduced into equation

(1.3) and f''(x) is eliminated. We obtain
W

-3f(x) + 4f(x+h) - f(x+2h) I
f'(x) = 2h + 3 h 2 f'''(X) + .... (I.19)

which is written more compactly in the form

-3f I + 4f -f
fl + OW(h2 ), forward difference (1.20)

1 2h

Similarly, Introducing equation (1.14) into equation (1.4) to

eliminate f''(x), we find

f1-2 - 4fi-1 + 3f
fi= 2h ' + O(h2 ), backward difference (1.21)

12h
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The above procedure can be extended to obtain more accurate

Iexpressions for the first and second derivatives. Such expressions

are presented in reference [47] for various order derivatives.

The derivative of a functio, in non-uniform spacing (Figure 1.3) can

"- also be approximated by finite difference using a Taylor series

expansion. A sumary of the finite difference representation of the

first- and second-order derivatives of a function f(x) in non-uniform

spacing Is given below

2hI * h2  hi + h2  hi

hi +h2) i h1h2  1+1 h2 (h1+h2 ) 1+2

forward difference 1.22)

.h_ h1 + h2  h +2h 2

I h 1++h2 ) 1-2 h1h2 fi-I h2 (h1+h2)

backward difference (1.23)

h2  h2 - hi hi

if h (h1+hZ ) i-i h1h f i h2 (h14h2 ) iJ+

central difference (1.24)

2 2 2
i" h1 (h +h) fi-i hh 2 fi 

+ h2 (h +h2 ) fi+"

S central difference '1.25)

Using equations 1.22) to (1.25) is very cumbersome, and it mav lead

to loss of accuracy. A more elegant method, general coordinates

transformation, can be employed in the non-uniform mesh to avoid these

problems. This transformation will be discussed in detail later.

,.'. "1.2 Errors Involved in VImrical Solution

In numerical solutions using the method of finite differences, the

partial differential equation is approximated with finite difference

@ t -ioe-



expressions at each nodal point, and as a result the solution of the

differential equation is transformed to the solution of a set of

algebraic equations. Wk have seen that, whenever a derivative Is

approximated by finite difference using a Taylor series expansion, an

error Is involved. Such an error is called the truncation error or the

discretization error. These errors appear because a continuous

* operator such as the first, or the second-order derivative, is replaced

by a finite difference approximation. In addition, numerical

calculations are carried out only to a finite number of decimal places

4 or significant figures; as a result, at each step in the calculation,

some error Is introduced due to this rounding-off, called the round-off

error.

W* Clearly, if the finite difference approximation is made by using

formulas having truncation errors of high order, the truncation error

at each step is minimum. Also, by decreasing the step size, the

truncation error is reduced for each step; however, a limit also is

reached at which further reduction in step size increases the total

number of calculations and as a result the round-off error may become

dominant.

Ideally, If it were possible to carry out the finite difference

calculations with extremely small steps and to perform the calculations

to an infinite number of decimal places, the resulting solution would

be exact. However, due to the cumulative effects of the rounding off

error and the discretization errors, the solutions obtained by the

finite difference method is expected to deviate from the exact result;

therefore, the solution computed is the numerical solution but not the

exact result. It Is very difficult to determine the cumulative
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departure of the numerical solution from the exact result due to the

cumulative effects of such errors. Comparison of numerical solutions

with exact analytic solutions reveals that, for most cases, the results
9

are very close indeed. After some experience with different methods

and different step sizes, a suitable combination can be chosen for the

numerical solution of a given problem.

1.3 Time Dependent Problem

The stability consideration plays an important role in the finite

difference solution of time dependent problems. There are several

schemes available to express the time dependent problems in finite

difference form. Each of these differencing schemes has its

advantages and limitations. We now discuss some of them by using the

one-dimensional time-dependent heat conduction equation as examples.

Explicit Method

The one-dimensional, time-dependent heat conduction equation for a

finite region 0 ( x ( L is

BT 82T
at (1.26)

B2T BT

If i-2 and - are replaced by the central and forward differences,

respectively, and using a uniform mesh size Ax in the x domain and At

for the time step, equation (1.26) can be rewritten in the finite-

difference form as

T(i,n+l) - T(i,n) T(1-1,n) - 2T(i,n) + T(i+i,n)= - (1.27)

with a truncation error of 0(&t)+OAx2 ). Where T(x,t) is

0-ii10-



represented by T(x,t) = T(iAx,n~t) = T(i,n). Solving equation (1.27)

for T(i,n+l) one obtains

T(i,n+l) = rT(i-1,n) + (1-2r)T(i,rn) + rT(i+l,n), (1.28)

where r - -2"

*D The equation is called the explicit form because the unknown

temperature T(i,n+l) at the time step (n+i) can be directly determined

from the temperatures T(i-i,n), T(i,n), and T(i+l,n) at the previous

time step. The explicit scheme provides a relatively straightforward

expression for the determination of the unknown T(i,n+1). The only

disadvantage of this method is that once k and Ax are fixed, there is a

maximum permissible step size At, which, by instability considerations

should not be exceeded. For example, when the boundary conditions at

x=O and x=L are both of the first kind (i.e., specified temperature),

the restriction imposed on the parameter r is

1
'; 0 ( r ( - (1.29)

That is, for given values of k and Ax, if the time step At exceeds the

limit imposed by the above criteria, the numerical calculations become

unstable, as a result of the amplification of errors. Figure 1.4

illustrates what happens to the numerical calculations when the above

stability criteria is violated. In this figure, the numerical

calculations performed with a time step satisfying the condition

C r =j-j< is in good agreement with the exact solution; whereas the

numerical solution of the same problem with slightly larger time step,

-iii-
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which violates the above stability criteria, i.e., r= > , results in

an unstable solution.

Iplicit Method

* The explicit method discussed above is simple computationally, but

very small time step should be used because of stability

considerations. Therefore, a prohibitively large number of time steps

* may be required if solutions are to be computed over a large period of

time. It is for this reason that other finite difference forms, found

to be less restrictive to the size of time step At, have been

developed. One such scheme is the fully implicit method. We

illustrate this method by considering the finite difference

representation of the heat conduction equation (1.26). The partial
S2T

derivative i-- is represented in finite difference form using the
3T

central difference formula, whereas the time derivative i is

represented in the finite difference form using the backward difference

expression.

Then, the finite difference form of equation (1.26) becomes

a,

T(i,n+l) - T(i,n) T(i-i,n+i) - 2T(i,n+i) + T(i+i,n+i)At= k ,(1.30)(. At '&xZ

This is called an implicit form of the finite difference representation,

because to determine the unknowns T(i,n+i), a set of simultaneous

k( algebraic equations are to be solved. The advantage of the implicit

method is that it is stable for all sizes of time step At. Thus, there

is no size restriction on At. The only size restriction on At is due

to the consideration of the truncation error.

The truncation errors for both explicit and implicit forms of the
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finite difference representations of the heat conduction equation is

of the order (Ax2 )+(At). But the actual accumulated error in both

methods need not be the same. Depending on the nature of the problem,

one of the methods may be preferred to the other.

Crank-Nicolson Method

Crank and Nicolson [47] suggested a modified implicit method. IrI

this method, the heat conduction equation (1.26) is represented in

finite difference form by taking the arithmetic average of the right-

hand sides of the explicit form (.26) and the implicit form (1.30).

Then, equation (1.26) becomes

T(i,n+l) - T(i,n) k T(i-l,n+l) - 2T(i,n+l) + T(i,n+i).- =- [ +
At 2 A+

T(i-i,n) - 2T(i,n) + T(i+i,n)
A+2  . (1.31)

The advantage of this mehtod is that, for given values of the space and

time steps Ax and At, the resulting solution involves less truncation

error due to At than the explicit and the implicit forms discussed

above. On the other hand the Crank-Nicolson form involves additional

computation.

To provide a better insight to the physical significance of the

Crank-Nicolson representation, equation (1.31) can be written in a more

general form by taking a weighted average of the two terms in the

brackets

T(in+l) - T(i,n) T(i-1.n+l) - 2T(i,n+l) + T(i+i,n+i)

at k I A "2tAt =kr x2

VI1.
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T(i-I,n) - 2T(i,n) + T(i+l,n)
+ (Q-) J, 1.32)

fo where 0 < r I is called the degree of implicitness. Clearly,

equation (1.32) reduces to the explicit form given by equation (1.27)

for n=0, to the implicit form given by equation (1.30) for q=1 and the

Crank-Nicolson form (1.31) for

Alternating-Direction Implicit Method

The implicit methods discussed above are advantageous to us because

of the superior stability properties. On the other hand, becuase a

large number of simultaneous equations need to be solved at each time

step, the computational problems become enormous when they are applied

to the solution of time dependent problems involving two or three space

dimensions. For example, for a three-dimensional problem with N

interior nodal points in each direction, there are a total of N3 nodes,

hence N3 x N3 matrix equations must be solved for each time increment.

The alternating-direction implicit (A.D.I.) method introduced by

Peaceman and Rachford [481, provides an efficient method for solving

problems involving large number of nodes. To illustrate the procedure,

a two-dimensional, time dependent heat conduction equation Is

considered

32T 82T I aT
ix z + iy2 - t in the region R (1.33)

..

To represent the space derivatives In finite difference form, the cent-

ral difference formula is used with an implicit and explicit difference

32 T a2T 2 T
approximation alternatively for j-2 and .y• For example, if a-2
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is represented in the implicit form, the derivative i is

represented by an explicit approximation. Then, the finite difference

form of equation (1.33), to proceed the solution from the (n)th step

to (n+i)th step, becomes

I T(i,j,n+l) - T(i,j,n) T(i-I,J,n+l) - 2TUi,j,n+l) + T(i+I,j,n+l)

K At AX2

T(i,j-l,n) - 2T(i,j,n) + T(i,j+1,,)
,i:&y+ (1. 34 )

The finite difference form of equation (1.33), to proceed the

5. solution from the (n+l)th step to the (n+2)th step, is written using
.. .82T 32T

an explicit form for i-- 2and implicit form for i as

I T(i,j,n+2)-T(i,J,n+l) T(i-I,J,n+l) - 2T(i,j,n+J) + T(i+l,J,n+l)
.. K At &x2

T(i,J-i,n+2) - 2T(i,j,n+2) + T(i,J+I,n+2)

A&y
2

The procedure is repeated alternately In the subsequent time steps.

The advantage of the A.D.I. method over the implicit method results

from the fact that it reduces the number of equations to be solved

.1 simultaneously for each time step. Consider for example a two-

dimensional, time dependent problem with N internal nodes along the x-

axis and N nodes along the y-axis. The A.D.I. method requires the

solution of N simultaneous equation N times for each time step, whereas

the implicit method requires the solution of N2 equation at each time

step. There are other methods, for example, the alternating directioni

LA..IS
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explicit (A.D.E) method [491, the Douglas-Rachford implicit scheme

C48),..., etc. The reader should consult these references for further

discussion of these methods.
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APPENUDIX II

-- WIFV U AM GERAL MIRDINATES ThANSFURRATION

The solution of a system of partial differential equations can be

*- greatly simplified by a well-constructed grid. On the other hand, a

grid which is not well suited to the problem can lead to an unsatis-

factory result. In some applications, improper choice of grid point

locations can lead to an apparent instability or lack of convergence.

For many applications, a non-uniform mesh must be used in order to

obtain an accurate solution and to save computing time. One can solve

the problem in the physical plane (original plane) by applying the

difference formulas on the non-uniform mesh directly, or transform the

non-uniform mesh to a uniform mesh and solve the problem In the

computational plane. Generally, the coordinate transformation gives a

more accurate solution than mesh changes.

11.1 Non-Uniform Besh

The simplest variation of the rectangular mesh system is obtained

by simply changing the mesh spacing in one direction at some point.

This would be done for the purpose of obtaining higher resolution (and

hopefully higher accuracy) in some region where the gradients were

expected to change rapidly. To illustrate this technique, we consider

the obvious method of changing from Ax1 to AX2 between node points at

% J: some node i=m, as shown in Figure II.1.

Expanding a function in a Taylor series forward and backward from i=m

gives
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m+ = f + a x + 2 m AX2 + 1 ax3jm AX 2
3 + O(xz 1.1)

=+ 1 axf 2i a2 f6IX

f2 - -I AX 7I -- I X,3  O(c 4 ), (11.2)
M-1 = f xtm Ax2 A I 6 x3  + I x

The expression for is obtained by subtracting equation 11.2)

from (I1.1)

Bfm+i I m(AXI + &2) + 2 I (Ax 22 - AX 2 ) + O(Ax3 ),(II 3)

where by O(Ax3 ) we mean the largest of O(Ax 3) or O(6x2
3 ). Solving for

xf gives

- f fm~_ - f m -i (11. )

0,m 1_ff fm+2- 1 2- 1x1 +(b O1) 2)..

xlm -~A , + Ax z  xI x x

xr n Ax,.rn~x +

I II

is second-order accurate only if

2x -_x + (x2 ] O ( x 2 ) " ( 1 1 .6 )

Note that, for Ax2 very small, the accuracy at m deteriorates to first

crder in "

¢ The expression for the second derivative is obtained by multiply-

ing equation (11.2) by 92=(Ax2/bx1 )2 and adding the result to (II.1).
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af IM f I
f + (i+s2 )f + s 2 f - &X2(1-S) M AX 2

I 
2 +

m~ m M-i X mx i

I a3f
+ m Ax2 (AX - A) + O(Ax4), (11.7)

a2f mi +  (i+s 2 )fM + S2 fr +- af I  I - s

+ O[(X 2 - ) Jx.

The resulting expression now requires s=O(i-Ax1
2 ) just to be

first-order accurate at i=m.

It is clear from the above equations that, unless the mesh spacing

is changed slowly, the formal truncation error is actually

degraded, rather than improved.

11.2 Coordinates Transformations

Early work using finite difference methods was restricted to

problems where suitable coordinate systems could be selected in order

to solve the governing equations in that base system. As experience

in computing complex problem was gained, general mappings were

* employed to transform the physical plane into a computational domain.

Numerous advantages accrue when this procedure is followed. For

% example, when the untransformed equations are differenced in the

expanding mesh, the result Is a deterioration of formal accuracy, as

we have seen; but the transformed equations may be differenced in a

V ! regular mesh (such as constant Ax, by) with no deterioration in the

formal order of truncation error, except that it will now be O(Ay2 )

rather than O(Ayz), also, the body surface can be selected as a
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* boundary in the computational plane permitting easy application of

surface boundary conditions. In general, transformations are used

which lead to a uniform space grid in the computational plane while

points in physical space may be unequally spaced. This situation is

shown in Figure 11.2. When this procedure is used, It is necessary to

include the derivatives of the mapping in the differential equation.

1I.2.1 Simple Tramformations

In this section, simple independent variable transformations are

used to illustrate how the governing equations are transformed. As a

first example, the problem of clustering grids near a wall is

considered. Figure II.3a shows a mesh above a flat plate in which

grid points are clustered near the plate in the normal direction (y).

While the spacing is not uniform in the y direction, it is convenient

to apply a transformation to the y coordinate so that the governing

equations can be solved on a uniformly spaced grid in the

computational plane (R, ) as seen in Figure II.3b. A suitable

transformation for a two-dimensional problem is given by

Transformation i:

= x, (11.9)Iln[[ + I - (y/h)]/[o - 1 + (y/h)]]

'9 = 1 - ln[(O + 1)/(A - i)] I < 8 ( w (11.10)

This stretching transformation clusters more points near y=O as the

stretching parameter 0 approaches I.

In order to apply this transformation to the governing equations,

the following partial derivatives are formed

-2
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Bxax ai ax a5

a ar a ay aB5y = By BR ay 39'(I.2

"' where

BaR ay R

ax ix = 0 y 0

and -y hO Z - [1 - (y/h)]2 )ln[(U + I)/( - 1)]

As a result, the partial derivatives simplify to

a a
ax aB' (11.13)

ax a
a 8 B B (11.14 )

If we now apply this transformation to the following equation

au au- +  - =  o ,0 0~s
ax a IIiS

the following transformed equation is obtained

au aq au
i:'i -- (-) - = 0. (II.16)
X=a ay a9

This transformed equation can now be differenced on the uniformly

spaced grid in the computational plane. We note that the expression
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for the derivative by contains y so that we must be able to express y

as a function of S. This is refered to as the inverse of the

S transformation. For the present transformation, given by equations

(11.9) and (11.10), the inverse can be readily found as

x =

0
+ 1) - (+ - )(( i)/(B - 1)]

", Y :(II.18)% [(O + D/O D1] - Y + 1

Transformation 2:

ax (11.19)
.k

= , I~~n(0l+[y(2a+±/h-2a]/(8-[y(2a(i )/hJ 2a1). 1.0

= G + (1 ln((BI+I)/(8-i)J - 1.0

For this transformation, if Q=O the mesh will be refined near y=h
1

only, whereas, if a=i the mesh will be refined equally near y=O

(Figure II.4). It has been shown that the stretching parameter is

related (approximately) to the nondimensional thickness (6/h) by

19 = (1 - 6/h)t / 2 0 ( 6/h ( 1 (11.21)

where h is the height of the mesh. For the transformation given by

equations (II.19) and (11.20), the derivative E is
by

2$(i - a)(2a + 1)
-y h(02 - [y(2u + 1)/h - 2a]2)ln[(O + 1)/( - 1)]

,J
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and the inverse transformation becomes

x = (11.23)

(+ + 2a)[(6 + 1)/(0 - +)J( -)/(1-a) _ * 2ay (2 + 1)ji + [(a + 1)/(0 - .1
(Y- Q )/ -aT ]  (11.24)

a,.

A useful transformation for refining the mesh above some interior

point yc (see Figure II.S) is given by

Transformation 3:

x" = x , (11.25)

= B + - sinh-  [- - 1)sinh(lB)l , (11.26)
Yc

where

B =i ln I + (e - 1)(ye/h) 0 < (11.27)B = in(~2, I + (e-' - 1)(Yc/h) 0< < (I.7

In this transformation, t is the stretching parameter which varies

from zero (no stretching) to large values which produce the most

refinement near y=yc. The metric - and y becomeBy

sinh(ib)

ay = yc[ 1 + [(y/yc) - 11sinh2aEB))1/2 , 11.28)

-B))

Y = YC (1 + sinh(TB) (01.29)

For our final transformation, a simple transformation which can be
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used to transform a nonrectangular region in the physical plane into a

rectangular region in the computational plane, as seen in Figure 11.6,

will be examined. The required transformation is

* Transformation 4: kFigure 11.6)

Rx , (11.30)

0y
h"x) 

(11.31)" h(x)

The known distance between the lower boundary and the upper boundary

(measured along a x=constant line) is designated by h(x). The

required partial derivatives are

a a h'(x) 8
ax E Y (x) B (11.32)

a ay h(x) '.

where h'(x)=dh(x)/dx. Hence, equation (1.15) is transformed to

BU u h'(R) au i au

Rh( ) i h(s) ay -0 . (11.34)

11.2.2 Generalized Transformation

In the preceding section, the simple independent variable

transformations which make it possible to solve the governing equations

on a uniformly spaced computational grid were examined. Let us now

consider a completely general transformation of the form

U
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(a) physical plane
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(b) computational plane

AFigure 11.6 Rectangularization of computational grid.
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E( ,Y = , (11.35)

n= r(x,y,z), (1.36)

C= C(x,y,z), (11.37)

• which can be used to transform the governing equations from the

physical domain (x,y,z) to the computational domain (E^0. Using
.,

the chain rule of partial differentiation, the partial derivatives

become

Sax aa
a+ ,)a (11.38)

a a a a

a a a a

a = a a(11.40)
BEza

W The derivatives (Ex, x, Cx, Ey, y, Cy, Ez, nz, ,z) appearing in these

equations can be determined in the following manner. We first write

the differential expressions

,,, d= Exdx + Ey dy + kzdz (11.41)

di = nxdx + rydy + rzdz (11.42)

4.

t d( = xdX + Cydy + zdz. (11.43)
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which in matrix form become

dE E dx

V'dq = x qy (dy (11.44)

d (x Cy CZ dz

In a like manner we can write

Jdx x TX /dl

kdyv dr1  ,(II.4S)

",-dy y E Yri YC r 1.5

-dz zE z zC dr

Therefore,

E. EyEz (xi x x

'"- Ex y -z
.E1T

n" x ny n, YE y n Y
Cx y Z) (ZE zT1 zE

y n J -(yx n~ xzC - C xz n x y x yl .I.Z6

J' -(Yz y x z q - XZ )  X~ - xy

E Ynz - ny n n ) 'En

Thus, the derivatives are:

%Ex =  JlYqZ n z Y z n1  (11.47)

•, -132-
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EXY = -J(x zC - xCzr), (11.48)

= J(x y1  - x~y), (11.49)

q= -J(y~z - y1 z ), (II. SO)

Ey = J(x zl - x z ), (11.51)

n= -J(xQy - x y ), (II. S2)

N = J(yz - yz), (11.53)

y = -J(x z - X z) (1.54)

C, = J(xy - xy). (11.53)

[%l

where J is the Jacobian of the transformation

IEx Ey E2 \
J, , ) =  x y z (1 .56)

Cx ry Cz

Iwhich can be evaluated in the following manner

J / 1
=i ( ,,))= y = (11.57)

z zq z

C 
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=1/[x (y z -y z )-x~ (y z -y z) + X (y z y zj)(1.)

The coordinate derivatives can be readily determined if analytical

expressions are available for the inverse of the transformation:

x = x(E'ri,c),(1.)

y =y(E'rI,(0, (11.60)

z =z(E'q,'0 1161

For a two-dimensional problem, the derivatives of a function

f(x,y) in the transformed plane (E,n) are:

f= (y f - yf)I W (11.62)

=y (x f -l x f /J (11.63)

f = (Y 2 - 2y Ey If Er + y E2f TI))/J 2 +

+ ((y 2y -2y yy + y 2 y )(X f -x, f ) +

I (y Zx 2y Yx y z) y f -YfEl/J3, (11.64)



+ Ex- (x y~ + x y )y~ + X - x f )J,1.5

= (x2f -2x X fq + XE2f )/J2 +
"YET (X 2f EE

a'+ (X n2 X EE 2xCxqxn + X 2 Xq)(y Ef i Yif)/J 3 . (11.66)

The Laplacian is given by

V2f (Alf -2A f~Ti+A f ~)/J2 + E(Aix -22Ax~r+A3 X~

*(y f-y f) + (Aly -2A2y *A3y )x f -xf )1/J3, (11.67)

or

*V 2 f (Aif E - 2A n+Afr~)+A A f E)/J2 . (11.68)

where

A x rl2 +y i2  ,(11.69)

A2 = + Yy ,i (11.70)

A3  x XE 2 (11.71)

A,4 (Y E A6 - E A7 )/J, (11.72)
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A5 = (xA 7 - yTiA 6 )/J , (11.73)

,A6 = Ax - 2A2xq + A3X (11.74)

A 7 = Ay E - 2A 2 y + A3y (lII)

Likewise, the Gradient is given by

Vf = (y f - y fY)e + (x f x f )e2]/J (11.76)

and the Divergence is expressed by

V.F = Cy(FI) - yE(Fl) + x (F2) - x (Fl2 ]/J (11.77)

where F = Fie, + F2e2 ' (11.78)

Finally, the Curl may be written as

Curl F = e [y(F 2 ) - yE(F 2 ) - x(F 1 ) + x (F) /J (11.79)

where J = x y x y is the Jacobian of the transformation, and the

subscripts (x,y,E,n) denotes partial derivatives in those coordinates,

respectively.

For cases where the transformation is the direct result of a grid

generation scheme, the metrics can be computed numerically using

central difference in the computational plane.

The general coordinate transformation can be employed to

transform very complicated curvilinear coordinates to simple

~VV.



rectangular coordinates. Some examples which transform the problem in

physical domain to computational domain are given in Figures 11.7,8,9.

The detail and more complicated transformations are found in (49,50).
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Figure 11.1 Rectangularization of computational grid.
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Figure 11.9 Three-dimensional coordinates transformation.
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APPENDIX III

U, B HOD

The subjects of thermodynamics and heat transfer are highly

complementary. For example, heat transfer is an extension of

*thermodynamics in that it considers the rate at which energy is

transported. Moreover, in many heat transfer analyses the first law of

thermodynamics (the law of conservation of energy) plays an important

role. In our application of the conservation laws, we first need to

identify the control volume, a fixed region of space bounded by a

control surface through which energy and matter may pass. With respect

to a control volume, a form of the energy conservation requirement that

is most useful for heat transfer analyses may be stated as follows.

"The rate at which thermal and mechanical energy enters a control

volume minus the rate at which this energy leaves the control volume

must equal the rate at which this energy is stored in the control

volume."

TF the inflow of energy exceeds the outflow, there will be an

increase in the amount of energy stored (or accumulated) in the control

volume; if the converse is true, there will be a decrease in energy

storage. If the inflow of energy equals the outflow, then a steady

state condition must prevail in which there will be no change in the

amount of energy stored in the control volume. For the heat conduction

problem, the inflow and outflow energy of the control volume Is the

heat flux O=-kVT. The law of conservation of energy is the key concept

of the energy balance method.
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111.1 Enerzy Balance on the Cavity Boundaries (Figure 3.3)

On face AB (Figure I11.1). Let us examine an arbitrary node

P(i,j), on the face AB, surrounded by nodes R, S, and W. When heat

conduction from the boundary nodes R or W to P is examined, we observe

4* -that the area available for heat flow is only [(Ay/2)'l], although the

distance across which heat is conducted is still tAx. Thus we haveTr- _V-Trlj

..- i. s-p =k (Ax ) Q '(I II.1 )

( T (i-,j) - T (i,j)

0 w~p = ( ay/2) T'i- xJ ' 1 ij (I1I.2)

. .. ' T 1 ~ ) - I I J

R4P = k I(Ay/2) i(II.3)
" '.I tax

The rate of change of internal energy Up in the time interval At at

P(i,J) is

T (i,j,n) - T (i,j,n-i)
Up= p c (x'Ay/2) 2 n=1 (III.4a)

'2,". % iFrom conservation of energy, I p = Qsum, we obtainII

05*

T I (ij3T' (ii~,n)-4 (BIJn1 (ij n =1-2).

1(i,j,n) = ITl1 ~ ~ -) TI(i,j,n-1) + AB1  I n~i (III.Sa)

3

V where
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AXA

212

0d

A(,3

C F~gure 111.1 Energy balance on face AB.

-143

Ns N



+B CT ( (il~,- -2 ()~ n1 + T (i~-I,J1/x2.y2 I6

The dimensionless forms were given in Equations (3.40a,b).

On face AC (Figure 111.2)

k .- 
yi+Av2 T"

______ kiij (ij) (118

II~ k (Ax/2) (111.8)

,and

5% II P IALA21"n1 II1a

* ,~=k /)T (i,j+ li n 1) + T (Bj (1I11)

T IiJn - 1(x~-)4 1 ijnl+A2, 0 II1b

~~3

whnd
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SFigure 111.2 Energy balance on face AC.
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AB 2Atk11 T1 il~-)/XA2  -- 11 1  i1jn1 
- (,~-)/x

+ IT -(i,J-l,n-1) - T (i,j,n1l)J/(Ay,2 + Ay1Ay2)

+ ITH (i~j+l,n-1) - T 11 (i,j,n-i))/(AyAy. + AY2
2 )] (111.12)

The dimensionless forms were given in Equations (3A42a,b).

On face BD (Figure 111.3)

AyleAyz T''(i+i,,p - T'',p)
* R4p k( 2 

(11.3

N*=k Ax/2) ~ 1 (1.4

and 

AL

UP =L c IA-Cy
1

+y
2

/4 n=1 (III.16a)

14 U c = C .(AY1+AY2)/4) 3T 1 1(i,j,n)-4T" (i,j,n-lH+T 11 (i,j,n-2)

n>1 (III.16b)

* 1 Q*um gives

T (i,j,n) =T I(i,j,n-i) + AB3 ,n=i (III.17a)

T (i,J,n) = -T (i,J,n-2)+4T (i,j~n-1)+2AB3 I n>i (III.17b)
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where

AB3 = 2Ak [ (T (i+l,j,n-1) - T 11(i,j,n-1))/AX2
3 pII cII

+ IT''(i,j-l,n-1) - Tll(i,j,n-l))/(Ay,2 + AyAyz)

+ [T (i,j+1,n-1) - T 1I(i,j,n-1)]I(Ay1Ay2 + Ay2
2)I (111>18)

The dimensionless forms were given in Equations (3.44a,b).

On face CD (Figure 111.4)

Q+ = k (Ax/) T 1 (~~)-T'ij (111.20)

Ax

QR4P = k ii(Ay/2) T'(+,jx 11 iJ (111.21)

.5. and

UP p1 c (AX.Av/2) At n=1 (III.22a)

3T 1 1(i,j,n) -4T''(i,j,n-1) + T 1 1 (i,j,n-2)
= AxAy2 2At

n>1 (111.221))
0 a Oum gives

T (i,j,n) =T I(i,j,ri-1) + AB4 ,n=1 (III.23a)
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Figure 111.4 Energy balance OR face CD.
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V. I _T 9 W W

T (i,j,n) = T (i,j,n-2)+4T (i,jn-1)+2AB ] n>1 (III.23b)

where

Atki I  TI
AB4 - t[T 1(i-1,j,n-1) - 2T (i,j,n-1) + T (i+1,j,n-I))/Ax2

P c

+ 2[T II(i.J+I,n-1) - T 1(i,j,n-i)]) (111.24)

The dimensionless forms were given in Equations (3.46a,b).

111.2 Energy Balance at the Corner of the Cavity (Figure 3.3)

If one has a two-dimensional configuration that looks like the

cross section of two walls meeting at a corner, the nodal point at the

corner so formed is called a reentrant corner.

Corner A. The node P in Figure 111.S is located at a reentrant

corner. The nodes N, R, S, and W are called exterior corner nodes.

Observing that the areas available for the flow of heat from N to P
Ax Ay

and from R to P are - 1 " and - 1 ", respectively. The heat fluxes

toward the corner point P(i,j) are:

= ( kl+k T(i-1,J) - T(i,j)

Q+ 2 Axy
Ow-}p = k(-----) (iJ) -Txi ' (I1I.26)

T(i+1,j) - T(i,j)

ORIp  k (6y/2) (111.27)

T(iJ-1) - T(i,j)
-(Ax) A(11.28)

r- , -ISO-
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IERFACE
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C Figure 111.S Energy balance at corner A.



and the rate of change of internal energy is

T(i,.j, n)-T( 1,3,n-i)
=(p c /2 + p c 1 /4) (Ax-Ay) At n=1 (III.29a)

14 =(p /2 p /4)(AxAy)3T(i,j,n)-4T(i,j,n-i)+T(i,j,n-2)
Op (p ci2pcx1/)(A-Y 2At

0>1 (III.29b)

From conservation of energy, p 0sum' one obtains

T(i,j,n) =T(i,j,n-1) + ABS n=i (III.30a)

*T(i,j,n) 3 I -T(i,j,ri-2) + 4T(ij,n-i) + 2ABS] n>i (III.30b)

where

At /2
* ~~ABS (pc/2pc 4 k +k )[T( i-I, J,n-1 )-T(i,j ,n-i fl/Ax2

+ k II T(i,J+i,n-i)-T(i,j,n-i))/Ay2 + k I T(i+1,J,n-i)

-T(i,j,n-1)J/AX
2+2k I T(i,J-1,n-1)-T(i,J,n-I1/Ay2]. (Q11.31)

Corner B (Figure 111.6)

UQW-+p k1 (Ay/2) ,(111.32)

V.X

ON k (Ax/2) Ay(111.33)

-~~ kl+k11  T(i+l1j) -T(i,j) (1.4
%QR--P = 2 ) AXA

01 -1S2-



I -WI V _ I"

Ax $, 49 , t * )

I A

SBSRATE

Figure 111.6 Energy balance at corner B.
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~ '~ Qs~P k (Ax) rQII-) -rS)j-. ~Ay(I.3

and

= (p C 2 +P~ 1 1 1/)(A~y)T(i, j,n)-T(i, j,n-1)
Up = p / pIlc I/4 (A -A )At n=1 (III.36a)

6p ( C/2 pc 4)(x-y)3T i,j , n)-4TUi, j,n-l.)+T i, j, n-2)

11>1 (III.36b)

&P -
0 u gives

T(i,j,n) =T(i,j,n-1) + AB 6 ,n=1 (III.37a)

-~ I-Thi,j,n-2) + +V~~-.' 2AB) 1 01~ (111.37b)

wher

At/2
A6 (p c /2+p c /4) I ,1li Ti,,-)/x

S+ R (T(i,J+i,n-1) - T(i,j,ri-1)J/6y2 + (R +R 1 )[T( i+1,J,n-1)

-T(i,j,n-)]/Ax+2 I (i,J-1,yT-1)-IT(iJn-)/ay.2) II.8

Cone (Figure 111.7)

4 =) k 11(AY) AX (11.39;

-SS4



- Ay

Figure 111.7
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ON . k (AX) T'1' ,j+l) T1 1. 0

QR-*P k (Ay/2) (1.1

=s ~ k (tixf2) T 1  (i j- ) -

Il ay(111.42)

and

il 3 AXA)3TI(i,j,n)-4T ir(iJn.)+T ri(i,j,n-2)

n>1 (III.43b)

QaUm gives

(T j~ T (i,j,n-1) + AD., n= J QI(II.44a)

T (i,J~n) = -T Il(i,J,n-2)+4T 11 i,J,n-.)+2A.,] , n>1 (III.44b)

w.here

V+ IT (i,J-1,n-1) -3T I(I,j,n-1) + 2T l(i,J+I,n.1)]/Ay2j
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Corner D (Figure 111.8)

=w* k (Ay/2) T IT(i-i,j) - T11 (i,j) I.4)
IT AX

QNP =k1  (Ax) T-T(~~)-TIij (111.47)

QRP= k (AY) T IT(i+l,j) - T''1(i,j) (111.48)
IT4 Ax

II I
0S4P = (Ax/2)T (i,j-i) -T I(i,j) (1.9

U and

=p p C (- 3 X&y T I(i,j,n) - T (I njl(n-i)0
U IT 11 4 Atn1(I.Ot

p 3c~(-A.y 3T IT(i,j,n)-4T I(i,j,n-i)+T 11(i,j,n-2)
Up p1C T4A.j 2At

nOi (111.50h)

&p Q= gives

I II

T (i,j,n) = -T (i,j,n-2)+4T"(i,j,n-)+2ABS] J ,n (III.Sib)

where

AB 8 =AI ((TT (i-l,j,n-1h-3T 11(i,J,n1i)+2T 11(i+i,J,nri)]/Ax
2

+ IT (iJ-i,n-i) - 3T1(i,.J,n-i) + 2TI (i,J+i,n-i)]/Ay2 L.(III.5 2 )
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The dimensionless forms for the corner points A, B, C, and D were given

in Equations (3.48a,b, 3.S0a,b, 3.S2a,b, 3.54a,b), respectively.

111.3 Enerzy Balance on the Surface Boundary (Figure 111.9)

For the explicit scheme, the time step is limited by the stability

criterion. As a result, the moving asperity at some time may not be

right above the grid points. To alleviate this situation, onie can

also use the energy balance method to describe the surface boundary

condition.

The heat fluxes toward P(i,j) from material points N, R, and W are

Ow-p = k (Ay/2) (III.S3)

N = k1 (Ax) Ay ' (111.S4)

T (i+I,1) - TI(i,i)
QR4P = I (Ay/2) Ax (III.SS)

The exterior heat which is conducted into the neighborhood surface of

the boundary point P(i,j), which is under the asperity, is

Sext. = q(O.SAx + h)/unit thickness , (111.56)

where h is less than Ax/2. The formulation thus takes care of all

cases when the asperity end points do not fall on the grid point. The

rate of change of the internal energy Up in the interval At at P(i,j)

is

T'(i,J,n) - T1 (i,j,n-i)
P = PI c I(Ax 'Ay/2) At , n=1 (II1.S7a)
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GP pc (x-A/2)3T (i,j,n) -4T
1 (i,jI,n-1) + T (i~j,n-2)

= p~c(~xtyI2)2At

a From conservation of energy, U,, one obtains

T1(i1,n) T1(ii~n-) +2q(Ax/2+h)At

T (~ln)= l~~ln-) pC XA +AB 9 ,n=1 (llI.58a)

T - A(i'i,n) [ -T'I (i,j,n-2) + 4T f~j 2q(6x/2+h)At +2B13 pIc I x~y9

n>1 (111.58b)

where

*AB 9 = -tk (ETl(i-1,1,n-i) - 2T (i,i,n-1) + T I(i+1,1,n-1)J/AX2

+ 2[T I(i,2,n-1) - T (i,1,n-1)J/Ay2i (111.S9)

The dimensionless forms for the surface boundary were given in

* Equations (3.S6a,b).
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C MAIN PROGRAM
C TEMPERATURE FIELD OF A LAYERED MEDIUM WITH A CAVITY, THE TOP
C EDGE OF THE CAVITY IS AT THE INTERFACE

C
C T,TT,TTT = TEMPERATURE IN THE CURRENT, PREVIOUS ONE, AND

* C PREVIOUS TWO TIME STEPS
C FX & FY = HEAT FLUX IN X & Y DIRECTION, RESPECTIVELY

C Q = SURFACE HEAT INPUT
C X & Y = COORDINATES IN PHYSICAL PLANE
C XS,YE,XSS,YEE.... = THE DERIVATIVES OF THE COORDINATES IN
C PHYSICAL PLANE WITH RESPECT TO THE COORDINATES IN COMPUTATIONA.
C PLANE
C

DIMENSION T(145,33),TT(145,33) ,TTT(145,33) ,FX(145,33),FY(145,33),
AQ(14S) ,X(14S,33) ,Y(14S,33) ,XS(14S,33),YE(145,33)

C
"I, C DA,DG,SIG,TAU = THE COEFFICIENTS DEFINED IN TEMPERATURE EQUATION

DIMENSION XSS(14S,33),YEE(14S,33),DA(145,33),DG(145,33),

ASIG(145,33),TAU(145,33)

C
,' C TS,FXS,FYS = TEMPERATURE AND ITS GRADIENTS IN THE CORRESPONDING

C POINTS IN STRESS FIELD
C DIMENSION TS(67,35),FXS(67,35),FYS(67,3S)

COMMON /AS4/ RLi,RL2,RLI,RLC,RMUI,RKU2,RMUI,RMUC,EXt,EX2,
AEXI,EXC,HAK,RHC
COMMON /AS5/ DV,DL,DIFFI,DIFF2,CONDI,COND2,BETA,Ri,R2,

AALPHS,DX,DYI,DY2,DT,RIi,R12,R21,R22,AI,A2,A3,A4,AS,A,AA,A6,A7,A8
COMMON /AS6/ DTRI,DTR2,MI,M2,N1,N2,MMI,M12,NNI,NN2,NAI,NA2,

* AMAI,MA2,KI,K2,K3,NTE,M122,M222,MII2,M212,Nl21
COMMON /ASY/ ID2,ID21,ID3,ID31,12,J2,13,J3,I4,J4

C
C It & JI = TOTAL GRID POINTS OF THE TEMPERATURE FIELD IN X & Y

C DIRECTION, RESPECTIVELY
re7, c

11=14S
J1=33

C
C LII & KJ = TOTAL GRID POINTS OF THE STRESS FIELD IN X & Y
C DIRECTION, RESPECTIVELY

C
LIi=67
XJ1:35
12=I1-1
13=11-2
J2=J1-1
J3=J1-2
I4=I1-3
J4=J1-3

C
C M1 & M2 X COORDINATES OF THE CAVITY CORNERS
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C
111=33
M12=64

C

C Ni & N2 =Y COORDINATES OF THE CAVITY CORNERS
C

N1=14

MM12=M2+1
NNI=NI-l
NN2 =N2+ j
NAI=Nl+l
NA2=N2-1
NA1=Ml+i
11A2=112-1
Hi 22=M11+ 2
11222=112+2
M112=11-2
11212=112-2
N121=Nl+1

C
C KI =LAYERED THICKNESS
C

'WON.KI=NI

K3=K1+1
1D2=8

4 1ID21= 1D2+i
ID3=140
1D31=ID3-1

C
C NTE = FINAL TIME STEP
C

NTE=i 21
C
C DV = TRAVERSE SPEED OF ASPERITY
C

DV=6.D2
* C

C DL = ASPERITY WIDTH
C

DL=1 .D-2IC COND =THERMAL CONDUCTIVITY
C

CONDi=1 .213D0

COND2=1 .213D0

CONDI=(COND1*COND2 )/2. DO
CONDC= (2. DO*CONDIPCOND2 )/3. DO

C
C DIFF =THERMIAL DIFFUSIVITY
C

DIFFI=4. 29D-3

-o6r
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DIFF2=4.29D-3
DIFFI=(DIFFI*DIFF2 )/2.DO

* DIFFC=(2.DO*DIFFI+DIFF2)/3.DO
C
C RNU = POISSON'S RATIO
C

RNU1=O. 285D0
RNU2=O. 28SD0

* RNVI=(RNUI+RNU2)/2.DO
RNUC=(2.DO*RNUI+RNU2)/3.DO

.1', C
C E =YOUNG'S MODULUS
C

El=3.6D7
* E2=3.6D7

EI (ElgE2)/2.DO
EC=(2.DO*El+E2)/3.DO

C
C RHO = MASS DENSITY

'p C
RH0I=9. 31D-3
RH2=9.31D-3
RHOI=(RH-Oi+RI102)/2.DO
RHOC=(2.DO*RHOi+RH2)/3.DO

% C
C EX = THE COEFFICIENT OF THERMAL EXPANSION

* C
EXI=6.29D-6
EX2=6.29D-6
EXI=(EXi+EX2)/2.DO
EXC=( 2.DOOEXi+EX2)/3.DO

C
*C RMUF = COULOMB COEFFICIENT OF FRICTION

C
RMUF=O. SDO

C
C RKUt L RL =LAME CONSTANTS

C RKUI=Ei/(2.DO*(i.DO4RNrUI))

RHU2=E2/(2.D0*(.DO+RNU2))
RIIUI=EI/(2.D0*(1.DO-.RNUI))
RMUC=EC/(2.D0*(1.DO+RNUC))

RLI=2.DO*RfUi*RNUI/(1 .DO-2.DO*RNUI)

RL2=2.DO*RNU20RNU2/(I .DO-2.DO*RNU2)
RLI=2 .DOORHUPRNUI/ (1.DO-2. DO*RNUI)
RLC=2.DOORNUC*RNUC/(1.DO-2.DO*RNUC)
C2=DSQRT(RIU2*1.2D1/RHO2)
HAK=RK(JFDV*DL/CONDI
RHC=RH020C2 **2

BETA=COND2/COND1
RI =DVODL/DIFFI
R2=DV*DL/DIFF2
ALPHS:DIFF2/DIFFI
DX=O. 2D-1
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DY1=O.GD-2
DY2=0. 2D-1

*C DT =TIIE STEP
C

-~ DT=0.ID-1

R11=DT/( RlDX*DX)
R12=DT/(RI*DYIDY1)
R21=DT/(R2DX*DX)
R22=DT/(CR2*DY2*DY2)
Al =1.DO+BETA/ALPHS
A2=1.DO+BETA
A3=A2/Al
A4=l .DO-2.DO*A3*Ril-2.D0*A3*Rl2

% %AS=O. SDO+0. 25D0*BETAIALPHS
A=l DO-2.D0*R2l-2. DO*R22
AA=i.DO-2.DO*Rii-2.DO0Rl2
A6=0. SDO*A2*Rll+0. DO*BETA*Rl2+0. SDO*Rli+R12
Al =Ri+BETA* R2
A8=A2/A7
DTR1.=DT/R.

DTR2=DT/R2
CALXLTXYXCEXSYEDGSGTUII

C ALXLTXYXEXSYEDGSGTUIl
NC=
NT =1

100 NT=NT+1

TItE=(NT-1)*DT

C

CALL TENP(T,TT,TTT,Q,FX,FY,X,Y,XS,YE,XSS,YEE,DA,DG,SIG,TAU,
AII,JJ,NT,I1,Jl)

C
NC=NC+i
IF(NT .NE. ?4TE) GO TO S

* C
CALL ?AP(TS,FXS,FYS,T,FX,FY,I1,Jl,LI1,KJ1)

C
DO 31 J=NN1,NAI
WRITE(6,O) J
WRITE(6,*) (T(I,J),I=?IHI,HAI)
WRITE(6,*) (FX(I,J),I=NHI,NAI)

31 WRITE(6,*) (FYCI,J),I=M~i,HAI)
DO 32 J=NNI,NAI
WRITE(6,*) J
WRITE(6,*) (T(I,J),I=A2,flM2)
WRITE(6,*) (FX(I.J),1HA2,fl2)

32 WRITE(6,O) (FY(I,J),I=KA2,MM2)
DO 33 J=NA2,NN2
WRITE(6,O) J
WRITE(6,*) (T(I,J),I=N111,HAI)
WRITE(6,*) (FX(I,J),I=MHi,MAi)
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33 WRITE(6,*) (FY(I,J),I=MM1,HA1)
DO 34 J=NA2,NN2
WRITE(6,O) J
WRITE(6,*) (T(I,J),I=1A2,Hfl2)
WRITE(6,*) (FX(I,J),I=NA2,KH2)

WRITE(6,101)
*101 FORMAT(/,SX,'TS',/)
* DO 20 J=1,KJ1

20 WRITE(6,90) (TS(I,J),I=1,L11)
WRITE(6,102)

102 FORIIAT(/,SX,'FXS',/)
DO 21 J=1,KJ1

*21 WRITE(6,90) (FXS(I,J),I=i,LII)
WRITE(6,103)

103 FORMAT(/,SX,'FYS',/)
N, DO 22 J=1,KJI

22 WRITE(6,90) (FYS(I,J),I=1,LIl)
90 FORMAT(S(IX,D14.7))

'5'S IF(NT .LT. IflE) GO TO 100
STOP

5) END
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-. THI SURUTN INUT CORIAE X & YV AN CACLAE THE~~*~ **~~~ --

C EIATVSO TECORIAE

-qC

C THI SUB=CRINEINS COORDYIAT LESX&YADCLLTETH
C SYXS=TH DERIVATIVES OF THE COORDINATES I

C
SUBRNONE XYLCT(X),Y(I,XS,,XSI,YEE,DG,I,UI,Ji)
D -. IMPLICITN REB(AH,O-ZAIlG(lJ)SG1,J)TU1

4.,- C
C O 90 &Y=COORINAE NPYIA LN
C O9 ISY,XS.E H EIVTVSO H CODNTSI
C HYICA LAEWIHREPC T HECORIATSI

DIENIO E(1J),Dt1JG11J.SGIJ)TUl,1

D0 ON90INUEJ

DO 91 J=1,11

S X( I,J)=O.Di)O .D

DO (1,9OD
6 Y(I,J)=.SDO(I4*.D

7 I( I,J)=.DO(-)00D

C
DO 8 1=13,138

L X(I,J)=4.SDO+(I-93).D
C

DO 8 1=139,145
8 X(I,J)=4.SDO+(1-138)0O.ODO

C

I. CONTINUE
C

DO 3 1=1,11



-. ~~~~~~~ -t.~. -S =- -. v- . pie- gi Vr ~ -v~ w

Y(I.1)=0.DO
Y(I.2)=0.OOSDO

* Y(I,3)=O.O1DO
* Y(I,4)=0.016D0

Y(I,S)=0.023D0
Y( I,6)=0.031D0
Y(I,7)=0.04D0

* Y(I,8)=O.OSDO
Y( I,9)=0.OS9DO
Y(I,10)=0.067D0
Y(I,il)=0.O7SDO
Y(I,12)=0.082D0
Y( I,13)=O.088D0

* Y( I,14U=0.094DO
Y(I,iS)=0.IDO
Y(I,16)=O.1O7DO
Y( I,17)=0.1iSDO
Y(I,18)=0.i2SDO
Y( 1,i9)=0.137D0
Y(I,20)=0.lS1D0
Y(I,21)=0.167D0
Y(I,22)=O.i85D0
Y(I,23h=0.20SDO

-. Y(I,24)=0.22SD0
Y(I,2S)=0.24SD0

* Y(I,26)=0.27D0
Y(I,27)=0.3D0
Y(I,28)=O.34DO
Y( I,29)=OA4DO
Y(I,30)=0.48D0
Y(I,3i)=0.SODO

* Y(I,32)=0.78D0
Y(I,33)=i.08D0

3 CONTINUE
C

DO 17 J=2,J2
DO 18 1=2,I2
XS( I,J)=(X( 1+1,J)-X( 1-1,3) )/2.DO
YE(I,J)=(Y(I,J+1)-Y(I,J-1) )/2.DO
XSS(I,J)=X(I-i,J)-2.DO*X(I,J)+X(I+1,J)
YEE(I,J)=Y(I,J-I)-2.DO*Y(I,J)+Y(I,J+1)

18 CONTINUE
17 CONTINUE

C 1=1

DO 19 J=2,J2
XS(I,J)=(-3.DO*X(I,J)+4.DO*X( I+1,J)-X(I+2,J) )/2.DO
YE(I,J)=(Y(I,J+I)-Y(I,J-1))/2.DO

19 CONTINUE
C

JC
DO 20 1=2,I2

9 ~XS( I,J)=(X( I+1,J)-X( 1-I ,J) )/2.D0
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20 CONTINUE
C

DO 21 J=2,J2

YE(I,J)=(Y(I,J+i)-Y( I,J-1))/2.DO

21 CONTINUE

J=Jl

F DO 22 1=2,I2
F XS(I,J)=(X(I+1,J)-X(I-1,J) )/2.DO

YE(I,J)=(Y(I,J-2)-4.DO*Y(I,J-1)+3.DO*Y(I,J))/2.DO
22 CONTINUE

C
XS(1,1)=XS(i,2)
XS(1,Ji)=XS(1,2)
XS(I1,1 )=XS( 11,2)
XS(I1,Jl)=XS(Il,2)
YE(1,1)=YE(2,1)
YE(1,Jl)=YE(2,Jl)
YE( 11,1)=YE(2,1)
YE( 11,Jl)=YE(2,Jl)

C
DO 2S J=1,Jl
DO 26 I=1,I1
DA( I,J)=1 .DO/XS(I,J)**2
DG( I,J)=1.DO/YE(I,J)**2
SIG( I,J)=-YEE( I,J)/YE(I,J)003

IFA()-SI(I,J) .L. 1D-) SG(,J=0D
IF(DABS(TAU(I,J)) .LT. 1.D-i0) TAU(I,J)=0.DO

26 DBSTU(,) CONTINUE AUI,)=.
26 CONTINUE

RETURN
END
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* C THIS SUBROTINE INPUTIS THE SURFACE B.C.
C

* SUBROUTINE QIN(DX,DT,NT,Ii,Q,iLI,JJ)
IMPLICIT REAL*8 (A-H,O-Z)

C
C 0 = SURFACE HEAT INPUT
C

DIMENSION Q(11)
* C

C NR2=DX/DT,NRI=NR2/2
C

- NRI =1
NR2= 2

-. C

*DO 24 1=1,11
Q( I)=0.DO

24 CONTINUE
C

IF(NT .GT. 2) GO TO 21
NC1 =0
NC2=0
NC3 =0
NTT= I
NDI=NR1
ND2=NR2
ND3 =0
NNT=I

21 NCl=NC1+I
NC2=NC2+I

IF(NC1 EQ. NR1) GO TO I

I NC3=NC3+1
* IF(NC3 .EQ. 1) GO TO 6

NC 3=0
GO TO 7

6 NTT=NTT+I
7 NCI=0
4 II=74-NTT+i

(C IF(NC2 .GE. NRI) GO TO 2
PB=0.SDO
GO TO 5

2 IF(NC2 .LT. NR2) GO TO 3
PB=0.SDO
NC2 =0
GO TO 5

C3 PB=0.DO
5 Q(11 )=PB+DT*NCI/DX

MDI =NDi -i
ND2=ND2-I
IF(NDI EQ. 0) GO TO 11
GO TO 12

C It ND3=NTJ3+I
IF(ND3 .EQ. 1) GO TO 13
KD3=0

pr 0- 'r' V a a



A). GO TO 14
13 NNT=NNT+l
14 ND1=NR1
12 JJ=124-NNT+l

IFCND2 .LE. NRi) GO TO is
-~ -:PF=O.DO

GO TO 16
15 IF(ND2 .GT. 0) GO TO 17

ND2=KR2
PF=O.DO
GO TO 16

17 PF=0.SDO
16 Q(JJ)=PF+DT*ND/DX

Ill=11+1
JJ1=JJ-1

C
DO 23 I=111,JJI
Q( I)=1.DO

23 CONTINUE
C

* RETURN
END
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4pC THIS SUBROUTINE SOLVED A LAYERED MEDIUM WITH A CAVITY, THE TOP
C EDGE OF THE CAVITY IS AT THE INTERFACE
C

SUBROUTINE TEMP(T,TT,TTT',Q,FX,FY,X,Y,XS,YE,XSS,YEE,DA,DG,
ASIG,TAU, II,JJ,NT, I1,Jl)
IMPLICIT REAL*8 (A-H,O-Z)

40 DIMENSION T(Il,Jl),TT(Il,JI),TTT(I1,Jl),FX(Il,Ji),
AFY(Ii,Jl),Q(II.),X(Il,Jl),Y(I1,Jl),XS(I1,J1),YE(i,JI)
DIMENSION XSS(Il,Jl),YEE(li,Jl ,DA( I1,Jl) ,DG(II.,Jl),

ASIG(li,Jl),TAU(I1,JI)
COMMON /A54/ RL1,RL2,RLI ,RLC,RMfU1,RMU2,RMfUI ,RMUC,EX1,EX2,

AEXI ,EXC,HAK,RHC
* COMMON /ASS/ DV,DL,DIFF1 ,DIFF2,COND1 ,COND2,BETA,R1 ,R2,

AALPHS,DX,DY1,DY2,DT,R,RI2,R21,R22,Al,A2,A3,A4,AS,A,AA,A6,A7,A8
COMMON lASS! DTRi,DTR2,M1,M2,N1,N2,MM1,MM2,NN1,NN2,NA1,NA2,
AMA1,MA2,KI,K2,K3,NTE,M122,M222,Mll2,M2l2,Nl2l
COMMON lAS7/ ID2,1D2i,1D3,1D31,12,J2,13,J3,I4,J4
IF(NT .ME. 2) GO TO 100
DO iJ=1,JI
DO 2 1=i,I1
T(I,J)=0.DO
TT( I,J)=0.DO
TTT( I,J)=0.DO

2 CONTINUE
I CONTINUE

C
C COMPUTE TEMPERATURE OF THE COATING LAYER
C DA,DG,SIG,TAU = THE COEFF~ICIENTS DEFINED IN THE TEMPERATURE
C EQUATION
C

*100 DO 3 1=2,12
DO 4 J=2,i(2

AA4=TAU( I,J)*(TT( I+1,J)-rF( I-1,J) )/2.DO
AAA=AAI+AA2+AA3-AA4

4 IF(NT .GT. 2) GO TO 5
C
C 2 POINTS BACKWARD DIFFERENCE IN TIME DERIVATIVE
C

T( I,J)=TT( I,J)+AAA*DT/Ri
GO TO 4

C 3 POINTS BACKWARD DIFFERENCE IN TIME DERIVATIVE
C

S T(I,J)=(2.DO0AAA*DT/Rl+4.D0TT(I,J)-.TTT(I,J))l3.DO
4 CONTINUE
3 CONTINUE

C COMPUTE TEMPERATURE OF THE SUBSTrRATE
C

DO 6 1=2.12
DO 7 J=K3,J2
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AAi=DA(I,J)*(TT(I-1,J)-2.DOTT(IJ)+TT(1,J))

AA3=SIG(I,J)*(TT(I,J+1)-TT(I,J-l))/2.DO

AAA=AA1+AA2+AA3+AA4
IF(NT .GT. 2) GO TO 8

C
C 2 POINTS BACKWARD DIFFERENCE IN TIME DERIVATIVE
C

T(I,J)=TT( I,J)+AAA*DT/R2
C

GO TO 7
C
C 3 POINTS BACKWARD DIFFERENCE IN TIME DERIVATIVE

8 T(I.J)=(2.D0*AAA*DT/R2+4.DO*TT(I,J)-TTT(I,J) ),'3.DO
7 CONTINUE
6 CONTINUE

C
DO 9 J=NI,N2

4 DO 10 I=HI,M2
T(I,J)=O.DO

10 CONTINUE
9 CONTINUE

C
C COMPUT~E TEMkPERATfURE OF THE CORNER POINTS

IF(NT .GT. 2) GO TO 12
C
C 2 POINTS BACKWARD DIFFERENCE IN TIME DERIVATIVE
C
C CORNER A
C

H(I, Nl)=TT C i, NI)+(0. SDOA2RllTT(M I-I, Ni
AA6*TT(HI,N)+.SDOBETA*RI2*TT(H1,Nl+l)+O.SDO*RI'l(1+,Nl)+
AR12T7(HI,Ni-i) )/A5

C
C CORNER B
C

T(H2,NI)=TT(H2,Nl)+(0.5D0*R11'IT(H2-i,NI )-A6
A*TT(H2,Nl)+0.SDO*BETA*RI2TT(H2,Nl+l)+0.SDOOA2*RllTT(2+1,Nl)
A+R12*TT(H2,Nl-l) )/AS

C
C CORNER C
C

T(HI,N2)=A*TT(H1,N2)+4.DO*(R2i*(TT(Hl-i,N2)+
AO.SDO*TT(Hl+i,N2))+R22*(0.SDO*TT(Hl,N2-1)+TT(KI,N2+1)))/3.DO

C
C CORNER D
C

T(H2,N2)=ATT(H2,N2)+4.D0*(R21*(0.SDO*TT(M2-I ,N2)
ATT(H2+1,N2))+R220(0.SDOOTT(H2,N2-i)+TTH2,N2+1)))/3.DO

C
GO TO 14
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'SC 3 POINTS BACKWARD DIFFERENCE IN TIME DERIVATIVE

C
C CORNER A

C
*12 T(H1,Nl)=(-TTT(M1,N1)+4.DO*TT(M1,NI)+2.DO*

A(O.5DO*A2Rl*TT(MI-lNl)-A6*TT(Ml,Nl)+O.SDO*BET*Rl2TT(M,
AN1+1)+O.SDO*Rll*TT(M1+1,Nl)+R2*TT(fl,Nl-l))/A5)/3.DO

C
C CORNER B
C

T(112,N1 )=(-TTT(112,N1 )+4.DO*TT(M2,NI )+2.DO*
A(O.SDO*Rll*TT(M2-1,Nl)-AG*TT(M2,N1)+O.SDO*BETAR2*TT(M2,Nl+l)+
AO.SDO*A2*Rll*TT(li2+1,Nl)+Rl2*TT(I12,Nl-l))/AS)/3.DO

C
C CORNER C
C

T1M1 N2 )=(-TTT(M11, N2 )4. DO*TT( Ml, N2 )+8. DO*
A(R21*(TT(111-i,N2)-l.SDO*TT(111,N2)+O.SDO*TT(Ml+l,N2) )+R22*(O.SDO
A*TT(Ml,N2-1)-1.5DO*TT(H1,N2)+TT(Ml,N2+1) ))/3.DO)/3.DO

C
C CORNER D
C

T(M2,N2)=(-TTT(M2,N2)+4.DO*TT(M2,N2)+8.DO*
A(R21*(O.SDOTT(M2-1,N2)-l.SDO*TT(M2,N2).TT(M2+1,N2))+R22*(O.SDO*
ATT(M2,N2-i)-1.SDO*TT(fl2,N2)+TT(M2,N2+1) ))/3.DO)/3.DO

C
C COMPUTE TEMPERATURE ON THiE LEFT & RIGHT HAND EDGE OF THE CAVITY
C

14 DO 1S J=NA1,NA2
I =11
DDY1=Y(I,J)-Y(I,J-1)
DDY2=Y( I,J+1)-Y(I,J)

* YY1=DDY1i*2+DDYi*DDY2
YY2=DDY1 DDY2+DDY2 **2

A(TT(I,J+1)-TT(I,J))/YY2)/R2
IF(DABS(EEI) .LT. I.D-65) EE1=O.DO

.4 A(TT(I,J+1)-TT(I,J))/YY2)/R2

IF(DABS(EEZ) .LT. I.D-65) EE2O0.DO
IF(NT .GT. 2) GO TO 16L C

C 2 POINTS BACKWARD DIFFERENCE IN TIME DERIVATIVE
C

I =11
T(I,J)=TT( I,J)+2.DO*EE1
I=112
T( I,J)=T'T( I,J)+2.DO*EE2

C
GO TO 15

C
C 3 POINTS BACKWARD DIFFERENCE IN TIME DERIVATIVE
C
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16 1=ll
4 T(I.J)=(-TTT(I,J).4.D0*TTUI,J),4.DO*EEI13.DO

TC I,J)h(-TTT( I,J)+4.DO*TT( I,J)+4.DO*EE2)/3.DO
15 CONTINUE

C
C COMIPUTE THE TEMlPERATURE ON THE TOP & BOTTOM EDGE OF THE CAVITY
C

.. ~. DO 17 I=KIIA,lA2
IF(NT *GT. 2) GO TO 18

C
C 2 POINTS BACKWARD DIFFERENCE IN TIMIE DERIVATIVE
C

J=Nl
T(I,J)AATT(I,J)+Rl1*(TT(I+,J)+Tf(I-1,J))+2.DO*Rl2*TT(I,J-1)
J=N2
T(I,J)=A*TT(l,J)+R21*(TT(I-1,J)+TT(I+1,J))+2.D*R22*TT(I,J+l)

C
GO TO 17

C
C 3 POINTS BACKWARD DIFFERENCE IN TIMlE DERIVATIVE
C

18 J=NI
T(I,J)=(-TTT(I,J)+4.DOTT(I,J)+4.DO(Rl1(O.SD0TTU+l.Jh-

J =N2
TI,J)=(-TTT( I, J)+4. DO*TT( I,J i44. DO* (R21 ( 0. 5DO*rII-.

A-TT(I,J)+0.SD0*TT(I.1,J))+R22(TT(I,J+1)-TTUI.J ) ))/3.DO
17 CONTINUE

C
C COMIPUTE THE TEMIPERATUJRE AT THE INTERFACE
C

DO 19 IJ=1,,2
IF(IJ EQO. 1) GO TO 20

11N2 =12
* GO TO 21

20 KN1=2

* 21 DO 22 I=M1N1.1(N2
J=KI
DDX1=X I ,J)-X( 1-1 ,J)
DDX2=X( 1+1,J)-X( I J)
XXI =DDXI*02+DDX1 DDX2

6- XX2=DDX1ODDX2*DDX2*02
EE3=2.DOA8DT*(TT( I-1 A -Ti -

ATT(I.Jn)/KXX2.D0*DT*(-il
bft\.ABETADT*(T'Id.J.1)-TI' i *,

IF(NT .GT. 2) GO TO /A4
C
C 2 POINTS BACKWARD[ 1)UI f "fF

C
T I.J) T1 I .1-1 I

* C
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GO TO 61
57 EF121=(3.DO*RLC+2.DORMUC)*1 .2DlIEXC*HAK/RHC
61 IF(I .LT. MIl OR. I .GT. MM12) GO TO 62

IF(I .GT. MAI .AND. I .LT. 1112) GO TO 63
IF(I .EQ. MA. OR. I .EQ. 1112) GO TO 64

62 EFIII=(3.DO*RLI+2.DO*RIIUlD*1.2D1*EXI*HAK/RHC
GO TO 6S

63 EFIII=(3.DO*RLI+2.DO*R1UI)*i.2Di*EXi*HAK/RHC
GO TO 65

64 EF1II=(3.DO*RLC+2.DO*RIUC)*i.2D1*EXC*HAK/RHC
65 IF(I .LT. Ml .OR. I .GT. H2) GO TO 66

IF(I .GT. HI .AND. I .LT. M12) GO TO 67
IF(I .EQ. Ml .OR. I .EQ. K12) GO TO 68

66 EFIJ=(3.DO*RLI+2.DO*R1IUI)i1.2Dl*EXI*HAK/RHC
GO TO 70

67 EFIJ=(3.DO*RLi+2.DO*RHUI )1.2Dl.EX1*HAK/RHC
GO TO 70

68 EFIJ=(3.DORLC+2.DO*RHUC)*1.2DIEXCIAK/RHC
70 IF(I .LT. 1111 .OR. I .GT. M1AD GO TO 71

IF(I .GT. MMI1 .AND. I .LT. M1AD GO TO 72
IF(I .EQ. NMI1 .OR. I .EQ. ?1A2) GO TO 73

71 EF2II=(3.DOORLI+2.DO*RHUI)*i.2Dl*EXI*HAK/RHC
GO TO 74

72 EF211=(3.DD*RL+2.D*RMUI)*i.2DI*EXI*HAK/RHC
GO TO 74

73 EF21l=(3.DO*RLC+2.DO*RtUC)Oi.2D1*EXC*HAK/RHC
74 IF(I .LT. 11112 .OR. I .GT. M1212) GO TO 7S

IF(I .Gr. 11.2 .AND. I .LT. 11212) GO TO 76
IF(I .EQ. 1112 .OR. I .EQ. M1212) GO TO 77

75 EF221=(3.DO*RLI+2.DO*RMUI)*l .2D1*EXI*HAK/RHC
GO TO 54

76 EF221=(3.DO*RL1+2.DO*RHfUl*1.2Dl*EXI*HAK/RHC
GO TO 54

77 EF221=(3.DO*RLC+2.DO*RHUC)*i.2D1*EXCOHAK/RHC
GO TO 54

53 EF12I=(3.DO*RL2+2.DO*RIU2)*1.2DI*EX2*HAK/RHC
EF11I=( 3.DO*RL2+2 .DO*RU2 ) 1. 2DlEX2HAK/RHC
EFIJ= (3. DO*RL2+2 .DOORHU2) '1. 2D1EX2*HAK/RHC
EF211=(3.DORL2+2.DORHU2)0i.2Di*EX2HAK/RHC
EF221=(3. DO*RL2+2 . D0R1U2 ) *1. 2Dl*EX2*HAK/RHC

54 IX=II+J-i
lF(l .LT. IX) GO TO 30
IF(I .GT. JJ) GO TO 31

GO TO 29
30 FX(I,J)=(EFi21T(I-2,J)4.D*EF1iT(I-i,J)+3.DO0EFIJ*T(I,J))

A/(2.DO*XS( I,J))
GO TO 29

31 FX(I,J)=(-3.D0*EFIJ'f(I,J)+4.DO*EF2ii*T(I+1,J)-EF221T(I+2,J))
A/(2.DOOXS( I,J))

29 CONTINUE
28 CONTINUE

C
DO 32 J=2,J3
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DO 33 1=1,11
IF(J .LT. NNI) GO TO 83
IF(J .EQ. NNi) GO TO 84
IF(J .GE. Ni) GO TO 85

83 ESi21=(3.D0ORL1+2.DO*RffUi*i.2D1*EX1iHAK/RHC
GO TO 86

84 IF(I .EQ. MI .OR. I .EQ. Mt2) GO TO 87
IF(I .GT. Hi .AND. I .LT. M2) GO TO 88
ES121=(3.DORLI+2.DORHUI)*1.2Di*EXI*HAK/RHC
GO TO 86

*87 ES121=(3.DO*RLC+2.DO*RtfUC)*i.2Dl*EXC*HAK/RHC
* GO TO 86

88 ES12i=(3.DO*RLI+2.DO*RHU)*i.2DI*EXi*HAK/RHC
GO TO 86

*85 ES12i=(3.DO*RL2+2.DO*RtfU2)*1.2Di*EX2*HAK/RHC
86 IF(I .LE. NI) GO TO 91

* IF(J .EQ. N121) GO TO 92
IF(J .GT. N121) GO TO 93

91 ESili=(3.DORLI+2.DO*RfUi)*i.2DI*EXI*HAK/RHC
GO TO 94

92 ESlii=(3.DORLI+2.DO*RHUI)i1.2DiEXI*HAK/RHC
GO TO 94

93 ESiii=(3.DO*RL2+2.DO*RMU2)*i.2DlEX2*IAK/RHC

33 CONINU)=ES2*(J1)E11TIJ1)(.OYI,
32 CONTINUE

* C
J~1
DO 34 1:1.11
FY( I,J)=-Q( I)

34 CONTINUE
C

* DO 37 J=NAI,NA2
DO 38 I=Ml,M2
FX(1I,J)=O.DO
FX( I,J)=0.DO

38 CONTINUE
37 CONTINUE

DO 39 J=Nl,N2

DO 40 I=HA1,hA2
FY(I,J)=0.DO
FY( I,J)=0.DO

40 CONTINUE

C39 CONTINUE

99 DO 41 I=2,I2
DO 42 J=I,J2
TTT( I,Jh=TT( I,J)
TT(I,J)=T(I,J)

c 42 CONTINUE
41 CONTINUE

RETURN
END
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*q~vC THIS SUBROTINE MAPS TEMPERATURE AND ITS GRADIENTS IN
C THE TEMPERATURE FIELD TO THE CORRESPONDING POINTS IN THE
C STRESS FIELD

C
q6 w ISUBROUTINE MAP(TS,FXS,FYS,T,FX,F'Y,I1,JI,LII,KJI)

IMPLICIT REAL*8 (A-H,O-Z)
C
C T, FX, FY = TEMPERATURE AND ITS GRADIENTS IN TEMPERATURE FIELD
C TS,FXS,FYS = TEMPERATURE AND ITS GRADIENTS IN STRESS FIELD

DIMENSION T(I1,J1),FX(I1,Jl) ,FY(I1,Jl),TS(LII,KJI),
AFXS(Lll,KJI),FYS(Lll,KJI)

C
DO I J=1,KJI
DO 2 I=1,L1
TS(I,J)=0.DO
FXS( I,J)=0.DO
FYS(I,J)=0.DO

V2 CONTINUE
I CONTINUE

* C
* I DO 3 J=1,JI

1T1=1
C

DO 4 I=7,10
TS(I,J)=T(IT1,J.
FXS( I,J)=FX( ITI,J)
FYS( I,J)=FY( ITI,J)

4 ITi=ITIli
C

.1~ 1T2=9
DO S I=13,15
TS( I,J)=T(IT2,J)
FXS( I,J)=FX( 1T2,J)

C FYS(I,J)=FY(IT2,J)

IT3=22
DO 6 I=16,19
TS( I,J)=T( 1T3,J)
FXS(I,J)=FX( 1T3,J)
FYS( I,J)=FY( 1T3,J)

C6 IT3=IT3+3

IT4=38
DO 7 I=22,30
TS(I,J)=T(IT4,J)
FXS( I,J)=FX( 1T4,J)
FYS( I,J)=FY( 1T4,J)

7 IT4=1T4+3
C

ITS=69
DO 8 1=33.39

w. TS( I,J)=T(ITS,J)
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FXS( I,J)=FX( 1T5,J)
FYS( I,J)=FY( IT5,J)

8 ITS=ITS+3
C

IT6=9i
DO 9 I=40,42
TSUI,J)=T(IT6,J)
FXS(1 ,J)=FX( 1T6,J)
FYS(I,J)=FY(IT6,J)

9 1T6=IT6+4
C

IT7=104
DO 1.0 I=43,49
TS(I,J)T(IT7,J)

* FXS(I,J)=FX(IT7,J)

10 IT7=1T7+S
C

IT8=136
DO i1. I=SO,S,4

r TS(I,J)=T(IT8,J)
FXS( I,J)=FX( 1T8,J)
FYS(I,J)=FY( 1T8,J)

It T8=ITS+2

TS(11,J)=T(6,J)
* FXS~ii,J)=FX(6,J)

FYS(1i,J)=FY(6,i)
TS(12,J)=T(8,J)
FXS(12,J)=FX(8,J)
FYS(12,J)=FY(8,J)
TS(20,J)=T(33,J)

* FXS(20,J)=FX(33,J)
FYS(20,J)=FY(33,J)
TS(21,J)=T(3S,J)
FXS(21.J)=FX(3S,J)
FYS(21,J)=FY(35,J)
TS(31,J)=T(64,J)
FXS(31,J)=FX(64,J)
FYS(31,J)=FY(64,J)
TS(32,J)=T(66,J)
FXS(32,J)z=FX(66,J)
FYS(32,J)=FY(66,J)

3 CONTINUE

RETURN
ZR END
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C MAIN PROGRAM
C STRESS FIELD OF A LAYERED MEDIUM WITH A CAVITY, THE TOP
C EDGE OF THE CAVITY IS AT THE INTERFACE
C

IMPLICIT REAL*8 (A-11,0-Z)
C
C X & Y = COORDINATES IN THE PHYSICAL PLANE
C A = MATRIX TO BE SOLVED
C B = RIGHT HAND SIDE OF THE ALGEBRAIC EQUATIONS
C U & V = DISPLACEMENTS IN X AND Y DIRECTION, RESPECTIVELY
C $11,512,522 = STRESSES
C TS,FXS,FYS = TEMPERATURE AND ITS GRADIENTS FROM TEMPERATURE FIELD
C

DIMENSION X(67,35),Y(67,35),A(649740),B(4420),TS(67,35),
AFXS(67,3S),FYS(67,3S),U(67,3S) ,V(67,3S) ,S11(67,3S),
AS12(67,35),S22(67,35)
COMMON /ZI/ RMU,RMU2,RMUI,RMUC,RMUIC,RMUII,RMUI2,RMUCI,RMUC2
COMMON /Z2/ RLI,RL2,RLI,RLC,RLIC,RLII,RLI2,RLC1,RLC2
COMMON /Z3/ DNI,DN2,DN3,DI,DJ,RHC

C
C LII & KJ1 = THE TOTAL NUMBER OF GRID POINTS IN X AND Y DIRECTION

LI1=67
KJi=35
LI=LIi-2
L2=LII-i
K1=KJI-i

C MBAND = HALF BANDWIDTH
C

MBAND=K1 2+6-I
C
C NEQ = TOTAL NUMBER OF EQUATIONS TO BE SOLVED
C

NE=LI*KI*2

C NTOT = TOTAL DIMENSION OF "A" VECTOR
C

NTOT= ( 2*MBAND+I ) *NEO
*JJ=Ki*2

W C
C MI & M2 = X COORDINATES OF THE CAVITY CORNERS
C

Mi=19
M2=31
MRI=MI+I
MR2=M2+1

C
C NI & N2 Y COORDINATES OF THE CAVITY CORNERS
C

N1=14
N2=24
MIlI=M1-1
M121=Ml1+1
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